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S1 Supplemental Methods

S1.1 Data

The plant genomes were acquired from NCBI’s RefSeq or GenBank. The ATAC- and ChIP-seq data is publicly
available data acquired from the NCBI’s SRA (Tab. S2). The different plant tissues and treatments used in the
ATAC- and ChIP-seq experiments are listed if available (Tab. S3). The datasets of the three species
Actinidia chinensis, Panicum miliaceum, and Sorghum bicolor, as well as the ChlIP-seq dataset of
Marchantia polymorpha were only used in later development stages.

S1.2 Architecture

Predmoter uses custom padding formulas to ensure sequence length divisibility and tensor shape consistency. The
padding formulas are adapted from the PyTorch documentation. First, the formula to calculate the output sequence
length (Louw) of a one-dimensional convolution, by using the input variables: padding, dilation, kernel size, stride,
and the input sequence length (Lin), was rearranged (Equation S1). The outer brackets indicate to round the result
down (https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html).

Lm+2*padding—dilation*(kernelsize—l)—l

Lo = | +1| (SD)

stride
The initial input sequence length, default is 21384 bp, needs to be divisible by the chosen stride (referred to as step
in Predmoter). For multiple convolutional layers the sequence length needs to be divisible by the chosen stride to
the power of the chosen number of convolutional layers. Since the convolutional layers don’t evenly divide the
given sequence length, i.e., a sequence length of 21384 and a stride of 2 should result in an output sequence length
of 10692, a padding formula was calculated to ensure even division. The result of this formula is the number of
zeros added to both sides of the input. For example, padding of 3 would result in 3 zeros getting added to the one-
dimensional input tensor on both sides. Padding is calculated using the variables: output sequence length (Lou),
dilation, kernel size, stride, and the input sequence length (L;,) of the one-dimensional convolutional layer, where

. . L; . .
the desired Loy iS: Loy = Str‘i’;e. The outer brackets indicate to round the result up.
padding _ (Lout—l)*stride—Lin+diéation*(kernelsize—1)+1] (SZ)

Second, the formula to calculate the output sequence length (Lou) of a one-dimensional transposed convolution,
by using the input variables padding, output padding, dilation, kernel size, stride, and the input sequence length
(Lin) (https://pytorch.org/docs/stable/generated/torch.nn.ConvTransposeld.html) was rearranged (Equation S3).

Loyt = (Lip — 1) * stride — 2 * padding + dilation * (kernelsize — 1) + output_padding +1 (S3)

Padding is calculated using the variables: output sequence length (Lou), output padding, dilation, kernel size, stride,
and the input sequence length (Lin), where the desired Loy is: L,y = L, * stride (Equation S4). The outer brackets
indicate to round the result down. In contrast to the one-dimensional convolution, the amount of zero-padding
applied to both sides of the input tensor is calculated via this formula: dilation * (kernelsize — 1) — padding.
For example, if the result of the custom padding formula is 6, the kernel size is 18 and the dilation is 1, then 11
zeros will be added to both sides of the input tensor. The additional variable output padding is only used to find
the correct output shape (Equation S5-S6). It does not add zero-padding to the output tensor. The combination of
an even kernel size and a stride of 1 is currently not possible due to a limitation in PyTorch.

padding — (Lin—1)*stride—Lout+dilation*(kzernelsize—1)+output_padding+1J (84)
where:
. (0, if 2] (kernel_size + stride)
output_padding = {1' otherwise (S5)
except if 2 | dilation and 2 | kernel_size, then:
. (1, if 2| (kernel_size + stride)
output_padding = {0, otherwise (56)


https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html

S1.3 Training details

The models were trained and tested on a server with an Intel(R) Xeon(R) CPU E5-2640v4 (Broadwell) @
2.40 GHz and an Nvidia GeForce GTX 1080 Ti GPU (11 Gb memory). The software versions were CUDA 11.7.1,
cuDNN 8.7.0 and Python 3.8.3 (Rossum and Drake 2009). The relevant Python package versions were H5py 3.9.0
(Collette 2013), PyTorch 2.0.1 (Paszke et al. 2019), Lightning 2.0.4 (Falcon 2019), Helixer version 0.3.2 (Stichler
et al. 2021; Holst et al. 2023) and Predmoter version 0.3.2. The exact versions of the other packages used can be
found in: https://github.com/weberlab-hhu/Predmoter/blob/main/training_package versions_freeze.txt. The same
server and setup were used for generating the predictions for Arabidopsis thaliana and Oryza sativa.

Three replicates per model setup were trained utilizing three different seeds: 132709648, 961333724 and
4227086911. The species selection for each model setup is listed in Table 3. The exact training parameters can be
found in Table S4. The two inter-species and 25 leave-one-out cross-validation models used the same parameters
as the Combined 02 model. All models were trained until convergence, meaning until the listed “stop-quantity”
stopped improving for the set number of epochs (patience). The best models, the models with the highest Pearson’s
r value for the validation set are listed in Table S6. These models were used to compare the target data to the
model’s predictions for each species from the training, validation, and test set. Testing was performed with four
workers/CPUs, one GPU and a batch size of 200. The tabular results are listed in Tables S7 and S8. Predictions on
the test set were also generated with four workers/CPUs, one GPU and a batch size of 200. Direct conversion from
the h5 output file to a or multiple bigwig files was chosen. The predictions for the test species including the flagged
regions are shown in Figure S1.

S1.4 Benchmarking

Benchmarking was performed on a machine with an Intel(R) Xeon(R) CPU W-2125 @ 4.00 GHz and an Nvidia
GeForce GTX 1050 Ti GPU (4 Gb memory). The software versions were CUDA 11.5, cuDNN 8.9.5 and Python
3.10.12 (Rossum and Drake 2009). The relevant Python package versions were H5py 3.9.0 (Collette 2013),
PyTorch 2.0.1 (Paszke et al. 2019), Lightning 2.0.8 (Falcon 2019), Helixer version 0.3.2 (Stichler et al. 2021;
Holst et al. 2023) and Predmoter version 0.3.2. The exact versions of the other packages used can be found in:
https://github.com/weberlab-hhu/Predmoter/blob/main/benchmarking_package versions_freeze.txt.

Depending on the model used, there is always a slight fluctuation in the prediction and conversion to bigWig or
bedGraph files. Two different models BiHybrid 04 and the combined model were used, as predicting two datasets
increases the computing time. Three benchmarking figures are shown. The first shows benchmarking Helixer’s
conversion from fasta to h5 files (Fig. S2). The second shows benchmarking inference and converting these into
bigWig and bedGraph files using BiHybrid 04, a model only trained on and able to predict ATAC-seq data (Fig.
S3). The final figure shows benchmarking inference and converting these into bigWig and bedGraph files using
the combined model trained on and able to predict ATAC- and ChIP-seq data (Fig. S4). Some genome assemblies
were highly fragmented, on contig or scaffold level, increasing the number of subsequences. For example, the
genome assembly of Arabidopsis thaliana wasn’t highly fragmented, the genome size being 119.7 Mbp and the
number of 21384 bp subsequences of the h5 file created by Helixer was 11202. The genome of B. natans was
highly fragmented, the genome size being 91.4 Mbp, but the h5 file contained 13390 subsequences. Since inference
and conversion to bigWig or bedGraph files is dependent on the amount of data, so the number of subsequences,
that was used to quantify the wall time (Fig. S3 & S4).

S1.5 Figure creation

The taxonomy tree in Figure 6 was created with the NCBI’s Taxonomy Common Tree application and visualized
using iTOL (Letunic and Bork 2021). The heatmaps and coverage plots were created with Matplotlib (Hunter
2007) and Seaborn (Waskom 2021). Jupyter Notebooks (Kluyver et al. 2016) detailing the creation of figures and
parts of figures respectively can be found at https://github.com/weberlab-hhu/Predmoter/blob/main/visualization.



https://github.com/weberlab-hhu/Predmoter/blob/main/training_package_versions_freeze.txt
https://github.com/weberlab-hhu/Predmoter/blob/main/benchmarking_package_versions_freeze.txt
https://github.com/weberlab-hhu/Predmoter/blob/main/visualization

S2 Supplemental Figures

S2.1 Alternative figures
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Figure S1: Experimental and predicted ATAC- and ChlP-seq read coverage +/- 3 kbp around the TSS. The average
experimental read coverage (target/y) and predicted ATAC- and ChlP-seq read coverage, excluding unplaced scaffolds and
non-nuclear sequences, in reads per base pair are shown for A. thaliana and O. sativa. The predictions of all cross-species
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models were plotted. Flagged sequences were excluded from the calculations.



S2.2 Benchmarking
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Figure S2: Benchmarking conversion from fasta to h5 file. Helixer’s wall time for converting fasta to h5 files in minutes
for all the species/genome assemblies used in this study. The gapped genome size including unplaced scaffolds in Mbp is shown
on the x-axis. The individual data points and a linear trend line are depicted.
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Figure S3: Benchmarking 1. The prediction time (black) and prediction h5 file conversion time to bigWig (orange) and
bedGraph (blue) files for ATAC-seq read coverage are depicted. The model used for predicting was the BiHybrid_04 model.
The wall time in minutes is shown on the y-axis and the number of subsequences, one subsequence is 21384 bp long, on the x-
axis. The individual data points and a linear trend line are displayed.
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Figure S4: Benchmarking 2. The prediction time (black) and prediction h5 file conversion time to bigWig (orange) and
bedGraph (blue) files for ATAC- and ChIP-seq read coverage are depicted. The model used for predicting was the combined
model. The wall time in minutes is shown on the y-axis and the number of subsequences, one subsequence is 21384 bp long,
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on the x-axis. The individual data points and a linear trend line are displayed.

S3 Supplemental Tables

S3.1 Data

Table S1: Nucleotide encoding.

Base Encoding

C [1.,0.,0.,0.]

A [0.,1.,0.,0.]

T [0.,0.,1.,0.]

G [0.,0.,0.,1.]

Y [o. ,0 05 0.]

R [0.,0.5,0.,0.5]

W [0.,0.5,0.5,0.]

S [0.5,0.,0.,0.5]

K [0.,0.,0.5,0.5]

M [0.5, 5 0.,0.]

D [0.,0.33,0.33,0.33]
A% [0.33,0.33,0.,0.33]
H [0.33, 0.33, 0.33,0.]
B [0.33,0.,0.33,0.33]
N [0.25,0.25,0.25,0.25]

The bases and possible other notations aside from C, A, T or G and the corresponding one-hot vector encoding used for the

input DNA sequence are listed.

Table S2: Data origin.

Species (scientific) ATAC-seq (SRAand  ChIP-seq (SRA and Genome Split
BioProject BioProject (RefSeq/GenBank
accessions) accessions) accession)




Actinidia chinensis PRINA1039995*: PRINA1039995%*: GCA_009663005.1 train
SRR26816478 SRR26816470
SRR26816479 SRR26816484
Arabidopsis thaliana ~ PRINA394532: PRINA408288: GCF_000001735.4 test
SRS2357129 SRR6057430
SRS2357131 SRR6057434
SRS2357132 PRINA535479:
(Maher et al. 2018) SRS4672527
PRINA527732: SRS4672528
SRS4500485 SRS4672529
SRS4500486 (Xi et al. 2020)
(Lu et al. 2019)
Bigelowiella natans PRINA753294: GCA_000320545.1 train
SRS9735275

(Marinov et al. 2022)

Brachypodium PRINA661629: PRINA661629: GCF_000005505.3 train
distachyon SRS7327661 SRS7327667
SRS7327662 SRS7327668
SRS7327689 SRS7327669
SRS7327690 SRS7327670
(An et al. 2020) (An et al. 2020)
Brassica napus PRINA808238: PRINA687926: GCF_020379485.1 train
SRS12055968 SRS7933167
SRS12055970 (Li, Li and Wang
2022)
Brassica oleracea PRINA687926: GCA 900416815.2 train
SRS7933149
(Li, Li and Wang
2022)
Brassica rapa PRINA687926: GCA 016163755.1 train
SRS7933147
(Li, Li and Wang
2022)
Chlamydomonas PRINA681680: GCF_000002595.2 train
reinhardtii SRR13170450
Eragrostis nindensis PRINAS807505: PRINAS548367: GCA _012490785.1 train
SRS12036931 SRS4948778
SRS12036932 SRS4948779
SRS4948781
SRS4948782
Glycine max PRINA657378: PRINA753632: GCF_000004515.6 train
SRS7209174 SRR15458316
SRS7209175 SRR15458321
(Huang et al. 2021) (Yung et al. 2022)
Malus domestica PRINAS821644: PRINA267727: GCA 916612005.1 train
SRS12449334 SRS752518
SRS12449335
Marchantia PRINAS597314: PRINA1043823*: GCA_003032435.1 train
polymorpha SRR10879463 SRS19609405
SRR10879464 SRS19609406
Medicago truncatula  PRINA647765: PRINA783892: GCF_003473485.1 val
SRS7054112 SRS11159582
SRS7054113 SRS11159583
SRS7054114 (Jaudal et al. 2022)
SRS7054115
SRS7054116
SRS7054117
SRS7054118
(Pereira et al. 2022)
Oropetium thomaeum  PRIJNA807505: GCA_001182835.1 train
SRS12036929
SRS12036933
SRS12036934
SRS12036935

Oryza brachyantha

PRINAS521886:
SRS4357813
SRS4357820

GCF_000231095.2

train




SRS4357828

Oryza sativa PRINA751145: PRINA386513: GCF_001433935.1 test
SRS9651698 SRS2419794
SRS9651700 SRS2419800
SRS9651701 SRS2419801
SRS9651704
SRS9651708
Panicum miliaceum PRINA1063172%*: GCA 032594955.1 train
SRR27704574
SRR27704575
Prunus persica PRINA381300: GCF_000346465.2 train
SRS2712226
SRS2712231
PRINAS589110:
SRS5638125
SRS5638127
SRS5638129
Pyrus x PRINA669907: GCF_019419815.1 train
bretschneideri SRS7570511
SRS7570512
SRS7570517
SRS7570518
SRS7570519
SRS7570520
SRS7570521
Sesamum indicum PRINAS77518: GCF_000512975.1 train
SRS5511999
SRS5512000
SRS5512001
SRS5512002
Setaria italica PRINA391551: GCF_000263155.2 train
SRS2307763
PRINA486213:
SRS3675865
Solanum PRINAS50391: PRINA624889: GCF_000188115.5 train
lycopersicum SRS13475373 SRS6475095
(Huang et al. 2023) SRS6475096
PRINA937410: SRS6475097
SRS16948284
SRS16948285
SRS16948288
Sorghum bicolor PRINA1063172%: GCF_000003195.3 train
SRR27704580
SRR27704581
Spirodela polyrhiza PRINAS27732: PRINAS27732: GCA _900492545.1 val
SRS4500499 SRS4500430
SRS4500501 (Lu et al 2019)
(Lu et al. 2019)
Zea mays PRINA697943: PRINA412230: GCF 902167145.1 train
SRS8775960 SRR6077551
SRS8775993 SRR6077553
SRS8775996 SRR6077554

The table contains the species, the BioProject and the linked SRA accessions, including citation if available, of either the ATAC-
seq or ChIP-seq experiment passing data preprocessing and quality control, the genome assembly, and the split into training
(train), validation (val) or test species. Accessions only used in later development stages are denoted with *.

Table S3: Tissues and treatments.

Species (scientific) ATAC-seq (tissues/treatments) ChIP-seq (tissues/treatments)

Actinidia chinensis PRINA1039995%: PRINA1039995%:
Leaves Leaves

Arabidopsis thaliana PRINA394532: PRINA408288:
Roots (Maher et al. 2018) NaN
PRINAS527732: PRINA535479:

Leaves (Lu et al. 2019) Seedlings under cold treatment and

following recovery (Xi et al. 2020)




Bigelowiella natans

PRINA753294:
Cell culture of unicellular algae
(Marinov et al. 2022)

Brachypodium distachyon

PRINA661629:
Leaves under light and dark treatment
(An et al. 2020)

PRINA661629:
Leaves under light and dark treatment
(An et al. 2020)

Brassica napus PRINAB08238: PRINA687926:
NaN Leaves (Li, Li and Wang 2022)
Brassica oleracea PRINA687926:
Leaves (Li, Li and Wang 2022)
Brassica rapa PRINA687926:
Leaves (Li, Li and Wang 2022)
Chlamydomonas reinhardtii PRINA681680:
NaN
Eragrostis nindensis PRINAS807505: PRINAS548367:

Desiccated leaves

Leaves under drought and sufficient
water treatment

Glycine max

PRINA657378:
Leaves (Huang et al. 2021)

PRINA753632:
Leaves under normal and salt
treatment (Yung et al. 2022)

Malus domestica

PRINAS21644:
Unknown tissue under drought and
sufficient water treatment

PRINA267727:
Field-grown leaves

Marchantia polymorpha PRINAS97314: PRINA1043823%*:
Thallus Thallus
Medicago truncatula PRINA647765: PRINA783892:

Roots at 0 h, 15 min, 30 min, 1 h, 2 h,
4 h, 8h after Sinorhizobium meliloti
lipo-chitooligosaccharides treatment
(Pereira et al. 2022)

Whole aerial tissues harvested from
14—17-day-old plants at 4 h after dawn
(Jaudal et al. 2022)

Oropetium thomaeum

PRINA807505:
Well-watered and desiccated leaves

Oryza brachyantha PRINAS21886:
Aerial tissue
Oryza sativa PRINA751145: PRINA386513:

Pistil and anther under low and normal
temperature treatment

Callus, leaves, and panicle

Panicum miliaceum

PRINA1063172%:
Leaves

Prunus persica

PRINA381300:
Leaf and ripe fruit
PRINAS589110:
Vegetative bud

Pyrus x bretschneideri

PRINA669907:
Buds during dormancy transition

Sesamum indicum

PRINAS577518:
Unknown tissue under light and dark
treatment

Setaria italica

PRINA391551:
Leaf mesophyll
PRINA486213:
Bundle sheath

Solanum lycopersicum

PRINAS850391:

4-weeks-old fourth leaves after 1 h of
heat stress (Huang et al. 2023)
PRINA937410:

PRINA624889:
Pericarp from the equatorial part of
the fruit

Fruit
Sorghum bicolor PRINA1063172%*:
Leaves
Spirodela polyrhiza PRINA527732: PRINAS527732:
Leaves (Lu et al. 2019) Leaves (Lu et al. 2019)
Zea mays PRINA697943: PRINA412230:
Unknown tissue (single cell) Root tips

The tissues and/or treatments used for a given species is listed per NGS dataset and study, including BioProject accession.
Entirely unknown tissue and treatment is denoted with NaN. Accessions only used in later development stages are denoted with

*



S3.2 Training parameters

Table S4: Model training parameters.

Para- Model
meters U-Net Hybrid Bi- Bi- Bi- Bi- Bi- Bi- Com- Com-
Hybrid Hybrid . Hybrid.  Hybrid ~ Hybrid ~ Hybrid  bined bined 02
02 03.1 03.2 04 05
Predmoter | cbc2256 cbc2256  ¢bc2256 cbc2256  cbe2256 cbc2256  c9ee6d7 c9ee6d7 c9ee6d7 137f06a
commit
Configu-
ration
para-
meters
datasets atacseq atacseq atacseq atacseq atacseq atacseq atacseq h3k4me3  atacseq, atacseq,
h3k4me3  h3k4me3
ram- false false false false false false false false false false
efficient
Model
para-
meters
model- cnn hybrid bi-hybrid  bi-hybrid  bi-hybrid  bi-hybrid bi-hybrid bi-hybrid  bi-hybrid  bi-hybrid
type
cnn-layers | 3 3 3 3 3 3 3 3 3 3
filter-size 64 64 64 64 64 64 64 64 64 64
kernel- 18 18 18 18 18 18 18 18 18 18
size
step 3 3 3 3 3 3 3 3 3 3
up 2 2 2 2 2 2 2 2 2 2
dilation 1 1 1 1 1 1 1 1 1 1
Istm- / 2 2 2 2 2 2 2 2 2
layers
hidden- / 128 128 128 128 128 128 128 128 128
size
bnorm false false false true true true true true true true
dropout / 0 0 0 0.3 0.5 0.3 0.3 0.3 0.3
learning- 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
rate
Trainer/
callback
para-
meters
ckpt- avg val  avg val avg val  avg val avg val avg val avg val avg val avg val  avg val_
quantity accuracy  accuracy  accuracy  accuracy  accuracy  accuracy  accuracy  accuracy  accuracy  accuracy
save-top-k | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
stop- avg_ avg_ avg avg avg_ avg_ avg_ avg avg avg
quantity train_ train_ train_ train_ train_ train_ train_ train_ train_ train_
loss loss loss loss loss loss loss loss loss loss
patience 10 10 10 10 10 10 10 10 10 10
batch size | 200 200 200 200 200 200 200 200 200 200
device gpu gpu gpu gpu gpu gpu gpu gpu gpu gpu
num- 2 2 2 2 2 2 2 2 2 2
devices
num- 4 4 4 4 4 4 4 4 4 0
workers

The parameter names are the exact naming convention used in Predmoter. The GitHub commit used is listed as Predmoter
the parameters can Dbe
hhu/Predmoter/blob/main/docs/Predmoter options.md.

commit. A  detailed

explanation  of

S3.3 Tabular results

Table S5: List of the best models.

found

https://github.com/weberlab-

Model Epoch Seed Validation Pearson’s r
U-Net 6 4227086911 0.4125
Hybrid 147 961333724 0.4370
BiHybrid 104 132709648 0.4884
BiHybrid 02 36 132709648 0.5217
BiHybrid 03.1 61 961333724 0.5336
BiHybrid 03.2 53 961333724 0.5374

10


https://github.com/weberlab-hhu/Predmoter/blob/main/docs/Predmoter_options.md
https://github.com/weberlab-hhu/Predmoter/blob/main/docs/Predmoter_options.md

BiHybrid 04 49 4227086911 0.5323

BiHybrid 05 2 132709648 0.4387
Combined 20 4227086911 0.4835
Combined 02 22 961333724 0.4927
IS 10 68 961333724 0.5852
IS 20 109 961333724 0.5851
L10 4. chinensis 50 961333724 0.4251
L10 4. thaliana 56 961333724 0.7083
L10 B. natans 35 961333724 0.1247
L10 B. distachyon 18 961333724 0.6674
L10 B. napus 36 961333724 0.5271
L10 B.oleracea 47 961333724 0.5789
L10 B. rapa 56 961333724 0.6509
L10 C. reinhardtii 67 961333724 -0.0379
L10 E. nindensis 31 961333724 0.3956
L10 G. max 38 961333724 0.5041
L10 M. domestica 38 961333724 0.4182
L10 M. polymorpha 24 961333724 0.4474
L10 M. truncatula 19 961333724 0.4717
L10 O. thomaeum 59 961333724 0.5818
L10 O. brachyantha 6 961333724 0.7862
L10 O. sativa 40 961333724 0.6019
L10 P._miliaceum 88 961333724 0.4352
L10 P, persica 25 961333724 0.6724
L10 P, x bretschneideri 3 961333724 0.5905
L10 S. indicum 21 961333724 0.7435
L10 S. italica 48 961333724 0.6289
L10 S. lycopersicum 32 961333724 0.3756
L10 S. bicolor 29 961333724 0.5658
L10 S. polyrhiza 13 961333724 0.5652
L10 Z.mays 57 961333724 0.2717

The best model was determined by the highest average validation Pearson correlation coefficient over all three replicates and
all epochs (rounded to four decimal points). The epoch numbering uses Python convention, starting at zero. The listed models
were used for testing and inference. The model checkpoint files of all models except the leave-one-out cross validation models
(L10) can be found at: https://github.com/weberlab-hhu/predmoter_models.

Table S6: Pearson’s correlation for ATAC-seq predictions per species.

Species Model Split
(scientific) U-Net Hybrid Bi- Bi- Bi- Bi- Bi- Bi- Com- Com- L10* IS_10* IS_20*
Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid bined* bined
02 03.1 03.2 03.1* 04* 02*

Actinidia NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.4608 0.3908 0.4771 0.4674 train
chinensis
Arabidopsis 0.2247 0.3338 0.4797 0.5916 0.6043 0.5881 0.6049 0.6122 0.6106 0.634 0.656 0.695 0.6833 test
thaliana
Bigelo- 0.1043 0.3947 0.4876 0.5875 0.6182 0.5852 0.6182 0.6191 0.5608 0.5571 0.1247 0.556 0.5656 train
wiella
natans
Brachy- 0.5337 0.6203 0.6843 0.7265 0.7466 0.7371 0.7469 0.7404 0.7165 0.7545 0.6138 0.7551 0.7577 train
podium
distachyon
Brassica 0.2264 0.2778 0.3904 0.4403 0.4485 0.4371 0.4817 0.4855 0.4777 0.4913 0.4444 0.5342 0.4862 train
napus
Eragrostis 0.3114 0.4084 0.465 0.5017 0.5323 0.5142 0.5323 0.5335 0.493 0.5009 0.3436 0.4932 0.4862 train

S
Glycine max 0.5407 0.6222 0.6721 0.7124 0.72 0.7138 0.723 0.7245 0.7174 0.7259 0.5717 0.7298 0.7297 train
Malus 0.2332 0.3524 0.4358 0.4829 0.519 0.4917 0.5185 0.5262 0.4801 0.4885 0.4069 0.4668 0.4695 train
domestica
Marchantia 0.3984 0.4671 0.5579 0.6037 0.6302 0.6121 0.6302 0.6334 0.5965 0.6174 0.4276 0.6421 0.605 train
polymorpha
Medicago 0.4268 0.4498 0.4918 0.5363 0.5498 0.5497 0.5504 0.5489 0.5583 0.5657 0.5548 0.6749 0.6598 val
truncatula
Oropetium 0.4873 0.6482 0.7423 0.7713 0.7993 0.7816 0.7993 0.8022 0.76 0.7677 0.5818 0.7326 0.7329 train
thomaeum
Oryza sativa 0.3743 0.46 0.4818 0.5063 0.4926 0.4887 0.493 0.4903 0.4472 0.5853 0.5801 0.6307 0.6693 test
Panicum NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.5304 0.4352 0.516 0.4957 train
miliaceum
Solanum 0.2897 0.3671 0.4361 0.4832 0.5037 0.4913 0.5077 0.5131 0.4964 0.5042 0.383 0.4928 0.4982 train
Ilycoper-
sicum
Sorghum NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.6693 0.5658 0.6609 0.6619 train
bicolor
Spirodela 0.3684 0.397 0.4779 0.4766 0.4836 0.4994 0.4836 0.4813 0.4938 0.5184 0.5367 0.6912 0.707 val
polyrhiza
Zea mays 0.3185 0.4383 0.4854 0.5334 0.5469 0.5274 0.5496 0.5504 0.54 0.5519 0.394 0.5571 0.5507 train

The predictions of the best models were compared with the experimental data per species. The intra-species prediction models,
IS_10 and IS_20, were evaluated on 10 and 20 % of the data from each species respectively. Only the test metrics for each of
the validation species of the 25 leave-one-out cross validation models (L10) are listed. The resulting Pearson correlation
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coefficients were rounded to four decimal points. Gap subsequences were excluded from all test runs. Results marked with *
also excluded flagged subsequences.

Table S7: Pearson’s correlation for ChlP-seq predictions per species.

Species Model Split
(scientific) Bi- Combined* Com- L10* IS_10* IS _20%*

Hybrid 05* bined 02*
Actinidia NaN NaN 0.5963 0.4595 0.6096 0.5996 train
chinensis
Arabidopsis 0.7692 0.7641 0.7719 0.7607 0.8019 0.7935 test
thaliana
Brachypodium 0.7391 0.7871 0.7972 0.7211 0.807 0.8058 train
distachyon
Brassica napus 0.6001 0.6222 0.6284 0.6098 0.6808 0.63 train
Brassica 0.5602 0.5893 0.5945 0.5789 0.5811 0.5704 train
oleracea
Brassica rapa 0.6328 0.6616 0.6679 0.6509 0.7145 0.6205 train
Chlamy- 0.7102 0.7988 0.8002 -0.0379 0.809 0.8064 train
domonas
reinhardtii
Eragrostis 0.4914 0.5603 0.5665 0.4476 0.5712 0.5676 train
nindensis
Glycine max 0.5097 0.5662 0.5756 0.4365 0.5808 0.5651 train
Malus 0.4454 0.4919 0.4946 0.4295 0.5067 0.4907 train
domestica
Marchantia NaN NaN 0.6710 0.4672 0.6852 0.6398 train
polymorpha
Medicago 0.3957 0.3771 0.3833 0.3887 0.5396 0.5622 val
truncatula
Oryza 0.7991 0.8372 0.8371 0.7862 0.8238 0.8452 train
brachyantha
Oryza sativa 0.5918 0.6160 0.6245 0.6237 0.6626 0.6862 test
Prunus persica 0.6591 0.7055 0.7110 0.6724 0.7163 0.66 train
Pyrus x | 0.6088 0.6328 0.6381 0.5905 0.6029 0.6456 train
bretschneideri
Sesamum 0.7589 0.7895 0.7982 0.7435 0.809 0.7843 train
indicum
Setaria italica 0.6559 0.7296 0.7451 0.6289 0.727 0.7596 train
Solanum 0.3860 0.4227 0.4273 0.3683 0.4188 0.3925 train
lycopersicum
Spirodela 0.5708 0.5699 0.5790 0.5937 0.7304 0.7442 val
polyrhiza
Zea mays 0.2873 0.3294 0.3343 0.1494 0.3454 0.3482 train

The predictions of the best models were compared with the experimental data per species. The intra-species prediction models,
IS 10 and IS 20, were evaluated on 10 and 20 % of the data from each species respectively. Only the test metrics for each of
the validation species of the 25 leave-one-out cross validation models (L10) are listed. The resulting Pearson correlation
coefficients were rounded to four decimal points. Gap subsequences and flagged regions were excluded from all test runs.
Results marked with * also excluded flagged subsequences.

S3.4 Peak statistics

Table S8: Peak percentage statistics.

Domain ATAC-seq peak percentage ChIP-seq peak percentage
(training set) (training set)

Dicots 5.08 11.24

Monocots 9 11.03

Mosses and Algae 8.48 13.32

Total 5.64 11.62

Dicots” 5.41 12.77

Monocots* 7.81 11.03

Total" 6.99 12.27

Species (scientific) ATAC-seq peak percentage ChlIP-seq peak percentage Split
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Actinidia chinensis 6.74 25.01 train
Arabidopsis thaliana 16.55 18.42 test

Bigelowiella natans 6.57 / train
Brachypodium distachyon 12.01 10.89 train
Brassica napus 2.58 14.52 train
Brassica oleracea / 13.99 train
Brassica rapa / 15.48 train
Chlamydomonas reinhardtii / 17.26 train
Eragrostis nindensis 9.4 19.28 train
Glycine max 6.52 8.39 train
Malus domestica 5.24 6.33 train
Marchantia polymorpha 10.39 9.39 train
Medicago truncatula 8.4 5.73 val

Oropetium thomaeum 10.86 / train
Oryza brachyantha / 13.43 train
Oryza sativa 7.6 11.08 test

Panicum miliaceum 6.15 / train
Prunus persica / 13.16 train
Pyrus x bretschneideri / 11.93 train
Sesamum indicum / 13.58 train
Setaria italica / 9.16 train
Solanum lycopersicum 5.97 4.5 train
Sorghum bicolor 4.68 / train
Spirodela polyrhiza 14.46 19.04 val

Zea mays 3.74 2.37 train

The base-wise percentages of peaks called from the merged sample bam files per species, domain (training set only) and NGS
dataset are listed. Flagged sequences were excluded from the calculations, except for genome assemblies on scaffold or contig
level, i.e. Bigelowiella natans, Eragrostis nindensis, Marchantia polymorpha, Oropetium thomaeum, Pyrus x bretschneiderii
and Spirodela polyrhiza. Entries denoted with * include the percentages of additional data added in later development stages,
i.e. 3 more ATAC-seq datasets from Actinidia chinensis, Panicum miliaceum and Sorghum bicolor, and 2 more ChIP-seq
datasets corresponding to acquired ATAC-seq datasets from A. chinensis and M. polymorpha.
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