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Abstract
Motivation: Identifying cis-regulatory elements (CREs) is crucial for analyzing gene regulatory networks. Next generation sequencing methods 
were developed to identify CREs but represent a considerable expenditure for targeted analysis of few genomic loci. Thus, predicting the out
puts of these methods would significantly cut costs and time investment.
Results: We present Predmoter, a deep neural network that predicts base-wise Assay for Transposase Accessible Chromatin using sequencing 
(ATAC-seq) and histone Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) read coverage for plant genomes. Predmoter uses only 
the DNA sequence as input. We trained our final model on 21 species for 13 of which ATAC-seq data and for 17 of which ChIP-seq data was 
publicly available. We evaluated our models on Arabidopsis thaliana and Oryza sativa. Our best models showed accurate predictions in peak po
sition and pattern for ATAC- and histone ChIP-seq. Annotating putatively accessible chromatin regions provides valuable input for the identifica
tion of CREs. In conjunction with other in silico data, this can significantly reduce the search space for experimentally verifiable DNA–protein 
interaction pairs.
Availability and implementation: The source code for Predmoter is available at: https://github.com/weberlab-hhu/Predmoter. Predmoter 
takes a fasta file as input and outputs h5, and optionally bigWig and bedGraph files.

1 Introduction
Despite large genomic and epigenomic studies being pub
lished in all fields of biology, the identification of cis-regula
tory sequences and their influence on gene regulation is still a 
major challenge. The discovery of new cis-regulatory ele
ments (CREs) can reveal targets for genetic engineering and 
breeding supporting optimization of plant growth as well as 
stress and pathogen resistance.

Two important locations of CREs are promoters and 
enhancers. Promoters are historically defined to serve tran
scription initiation (Jacob et al. 1964, Epstein and Beckwith 
1968, Ippen et al. 1968). The core promoter is a region of 50 
to 100 base pairs (bp) upstream from the transcription start 
site (TSS) (Dynan and Tjian 1985, Struhl 1995). We refer 
here to promoter as the assembly of individual transcription 
factor (TF) binding sites, i.e. CREs, upstream of a gene that 
entirely or partially drive local transcription initiation. This 
region contains at least the core promoter. Conversely, 
enhancers can increase transcription levels from a given pro
moter. They were found to act in either orientation and at 
many positions. The first discovered enhancer sequence 
was found in Escherichia coli, and it could act up to 
1400 bp upstream or 3300 bp downstream from the TSS 

(Banerji et al. 1981). An example distal enhancer in plants is 
acting 140 kbp upstream of the bx1 gene in Zea mays (Zheng 
et al. 2015). Whereas the core promoter mostly coordinates 
expression of the adjacent gene, enhancers can regulate gene 
expression of multiple genes.

The binary classification of promoters and enhancers has 
since been challenged. Promoters with high enhancer 
strengths (Engreitz et al. 2016, Dao et al. 2017, Diao et al. 
2017) and active enhancers driving local transcription initia
tion at their boundaries (Kim et al. 2010, Santa et al. 2010, 
Andersson et al. 2014) have been reported. Promoters and 
enhancers usually are both found in accessible chromatin 
regions (ACRs), where the DNA is accessible to TFs (Gross 
and Garrard 1988, Cockerill 2011, Song et al. 2011). Both 
promoter and enhancer regions are marked by different his
tone modifications. Histone H3 trimethylated at lysine 4 
(H3K4me3) is primarily present at active genes, while 
H3K4me2 occurs at both inactive and active euchromatic 
genes (Santos-Rosa et al. 2002). Both can be detected in the 
core promoter and the coding region of genes. Enhancers are 
instead marked by H3K4me1 (Heintzman et al. 2009). Active 
enhancers are additionally marked by an acetylation of 
H3K27 (H3K27ac) (Rada-Iglesias et al. 2010). Poised or 
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inactive enhancers are in contrast marked by the absence of 
H3K27ac, instead showing an enrichment of H3K27 trime
thylation (H3K27me3) (Creyghton et al. 2010, Rada-Iglesias 
et al. 2010). However, H3K4me1 was found to not com
monly be associated with distal ACRs in plants (Lu 
et al. 2019).

Assay for Transposase Accessible Chromatin using se
quencing (ATAC-seq) is a common method to identify ACRs 
genome-wide (Buenrostro et al. 2013). It is faster and more 
sensitive than previous methods like DNase I hypersensitive 
sites sequencing (DNase-seq) (Crawford et al. 2006) or 
formaldehyde-assisted isolation of regulatory elements 
(FAIRE-seq) (Giresi et al. 2007). ATAC-seq uses hyperactive 
mutant Tn5-transposase, which cuts the DNA primarily in 
ACRs and ligates adapters to the cut DNA fragment 
(Buenrostro et al. 2013). The resulting fragments are ampli
fied by PCR creating a sequencing library. In contrast to 
ATAC-seq, which outputs ACRs, chromatin immunoprecipi
tation DNA-sequencing (ChIP-seq) (Kim et al. 2004, Johnson 
et al. 2007, Robertson et al. 2007) is used to investigate how 
proteins that interact with the DNA regions of interest regu
late target gene expression. Proteins attached to the DNA are 
crosslinked with the DNA, the DNA is sheared, the proteins 
are immunoprecipitated and unlinked, so the DNA can be 
amplified and sequenced (Kim et al. 2004, Johnson et al. 
2007, Robertson et al. 2007). Depending on the assay, either 
TF or histone antibodies are used in immunoprecipitation. 
Promoter as well as enhancer specific histone modifications 
can be identified using ChIP-seq.

Deep learning (DL) is a part of machine learning using arti
ficial neural networks (NNs) that have multiple hidden layers 
creating a deep neural network (DNN) architecture (Schulz 
and Behnke 2012). In silico identification of promoter and 
enhancer sequences using DL was attempted in several stud
ies. Most tools, like DeePromoter (Oubounyt et al. 2019), 
Cr-Prom (Shujaat et al. 2021), Depicter (Zhu et al. 2021), 
HPMI (Wang et al. 2022), or iProm-Zea (Kim et al. 2022), 
predicted promoters as a sequence stretch around the TSS. 
The networks in these studies performed a fundamentally dif
ferent predictive task than actual promoter sequence predic
tion. Meanwhile, recent enhancer predicting networks, like 
PREPRINT (Osmala and L€ahdesm€aki 2020), the cross- 
species predicting CrepHAN (Hong et al. 2021) or 
iEnhancer-ELM (Li et al. 2023), were trained on experimen
tally verified enhancers. All these studies utilize human and/ 
or other mammalian enhancers. Recent plant enhancer pre
dicting networks, RicENN (Gao et al. 2022) and AthEDL 
(Chen et al. 2022), only utilized verified enhancers of Oryza 
sativa or Arabidopsis thaliana. Enhancer datasets of a diverse 
range of plant species are so far not publicly available. Other 
approaches of predicting regulatory factor binding activity 
(Hiranuma et al. 2017), predicting enhancer regions 
(Thibodeau et al. 2018), predicting single-cell chromatin 
accessibility (Yuan and Kelley 2022), or predicting 
transcription-factor binding on a genomic scale (Cazares 
et al. 2023) utilized ATAC-seq data in conjunction with 
DNA sequence information. However, these networks only 
utilize ATAC-seq data from human samples. Furthermore, 
the Enformer DNN can predict gene expression and chroma
tin states, represented as multiple genomic coverage tracks 
like H3K27ac coverage, in humans and mice from DNA 
sequences (Avsec et al. 2021). Plant research keeps lagging 
behind research in mammalian species in this field and 

a DNN focused on predicting plant CREs would be a first 
step to alleviate this underrepresentation. Moreover, generat
ing ATAC- and ChIP-seq libraries is costly and time consum
ing and a DNN predicting plant ATAC- and ChIP-seq read 
coverage directly from the genomic DNA sequence would cir
cumvent these constraints. To date, no such model has 
been reported.

Here we present Predmoter, a tool used for cross-species 
base-wise prediction of plant ATAC- and/or H3K4me3 ChIP- 
seq read coverage, using the genomic DNA sequence as input. 
We utilized publicly available ATAC- and ChIP-seq data to 
infer plant promoter and enhancer regions. We trained our fi
nal model on ATAC-seq data from 13 different plant species 
and ChIP-seq data from 17 plant species.

2 Methods
2.1 Data
2.1.1 Data overview and preprocessing
The entire dataset consisted of 25 plant genomes, for 17 of 
which genome-wide ATAC-seq data was publicly available 
and for 21 of which genome-wide ChIP-seq (H3K4me3) data 
was publicly available (see Table 1 and Supplementary 
Table S2). A wide variety of tissues and treatments were used 
in these ATAC- and ChIP-seq experiments which are listed in 
Supplementary Table S3.

The NGS data was downloaded from the sequence read ar
chive (SRA) using the SRA-Toolkit 3.0.0 (https://github.com/ 
ncbi/sra-tools/wiki/01.-Downloading-SRA-Toolkit). The reads 
were trimmed with Trimmomatic 0.36 (Bolger et al. 2014) and 
quality controlled using FastQC 0.11.9 (Andrews 2010) and 
MultiQC (Ewels et al. 2016). If the reads passed quality con
trol, they were mapped to the reference genome using BWA 
2.1 (Md et al. 2019). Conversion to bam files was performed 
using SamTools 1.6 (Danecek et al. 2021). The Picard Toolkit 
(Broad Institute ed 2019) was used to mark duplicates. 

Table 1. Plant genomes and available datasets.

Domain Species ATAC-seq ChIP-seq  
(H3K4me3)

Algae Bigelowiella natans ✓

Chlamydomonas reinhardtii ✓

Mosses Marchantia polymorpha ✓ ✓

Monocots Brachypodium distachyon ✓ ✓

Eragrostis nindensis ✓ ✓

Oropetium thomaeum ✓

Oryza brachyantha ✓

Oryza sativa ✓ ✓

Panicum miliaceum ✓

Setaria italica ✓

Sorghum bicolor ✓

Spirodela polyrhiza ✓ ✓

Zea mays ✓ ✓

Dicots Actinidia chinensis ✓ ✓

Arabidopsis thaliana ✓ ✓

Brassica napus ✓ ✓

Brassica oleracea ✓

Brassica rapa ✓

Glycine max ✓ ✓

Malus domestica ✓ ✓

Medicago truncatula ✓ ✓

Prunus persica ✓

Pyrus x bretschneideri ✓

Sesamum indicum ✓

Solanum lycopersicum ✓ ✓
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The duplicates, unmapped reads, non-primary alignments and 
reads not passing platform quality checks were removed with 
SamTools. Plots for quality control were generated using 
deepTools 3.5.3 (Ram�ırez et al. 2016) and the necessary ge
nome annotations were generated using Helixer v.0.3.1 
(Stiehler et al. 2021, Holst et al. 2023). ATAC-seq data was 
deemed of high enough quality if the average coverage enrich
ment ±3 kbp around the TSS showed the expected peak and 
the average peak read coverage was at least 2.5 times the back
ground coverage. The quality control for ChIP-seq data was 
performed using the same criteria. A detailed data preprocess
ing documentation is available at: https://github.com/weber 
lab-hhu/Predmoter/blob/main/docs/data_preprocessing.md. 
The plant genome fasta files and final NGS data bam files 
were converted to h5 files using Helixer (Stiehler et al. 2021, 
Holst et al. 2023). The ATAC-seq reads were shifted þ4 bp on 
the positive strand and −5 bp on the negative strand to adjust 
the read start sites to represent the center of the transposon 
binding site (Buenrostro et al. 2013). A detailed documenta
tion of the h5 file creation and architecture is available at: 

https://github.com/weberlab-hhu/Predmoter/blob/main/docs/ 
h5_files.md.

The species used in the development of Predmoter are sepa
rated into the four domains algae, mosses, monocots, and 
dicots. The availability and usage of the species dataset for 
ATAC- or ChIP-seq is indicated by a check mark.

2.1.2 Filtering flagged sequences
A naïve filtering approach was used to reduce the noise in the 
dataset. The ATAC-seq data showed high coverage for non- 
nuclear sequences. The transposase cuts primarily open 
chromatin (Buenrostro et al. 2013) and as such also the chloro
plast and mitochondrial genomes. When the organelles were 
not completely removed before the experiment, the data con
tained noise in the form of notably higher coverage in these 
regions. Unplaced scaffolds were also observed to contribute 
to this noise during the data quality control steps (Fig. 1a).

Therefore, unplaced scaffolds and non-nuclear sequences 
were flagged during later development stages (see Section 2.2 
and Tables 2 and 3). Assemblies on scaffold or contig level, 

Figure 1. Average ATAC- and ChIP-seq coverage ±3 kpb around the TSS for each species in the dataset. (a) Average ATAC-seq coverage including 
unplaced scaffolds and non-nuclear sequences. (b) Average ATAC- and ChIP-seq coverage excluding unplaced scaffolds and non-nuclear sequences. The 
species are sorted into the three categories dicots, monocots, and algae/mosses.
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Bigelowiella natans, Eragrostis nindensis, Marchantia poly
morpha, Oropetium thomaeum, Pyrus x bretschneiderii, and 
Spirodela polyrhiza, were not flagged. The flagged sequences 
were filtered out (Fig. 1b). The information about the assem
bly accessions of the unplaced scaffolds and non-nuclear 
sequences was extracted from the sequence report jsonl files 
available at the NCBI’s RefSeq or GenBank and added to the 
h5 file (under “data/blacklist”) via add_blacklist.py in 
“side_scripts.” The flagged sequences reached around 7% of 
all genome assemblies used not counting assemblies on scaf
fold or contig level.

2.2 Architecture and proposed models
The model architectures were implemented using Pytorch 
Lightning (Falcon 2019) on top of PyTorch (Paszke et al. 
2019). The model used supervised learning, a method that 

connects an input to an output based on example input–out
put pairs (Russell and Norvig 2016).

The input for the model was a genomic DNA sequence. 
The nucleotides were encoded into four-dimensional vectors 
(see Supplementary Table S1). The DNA sequence of a given 
plant species was cut into subsequences of 21 384 bp. This 
number was large enough to contain typical gene lengths of 
plants while being divisible by ten of the numbers from one 
to twenty. An easily divisible subsequence length is a require
ment for Predmoter (see Supplementary Section S1.2). As few 
chromosomes, scaffolds or contigs were divisible by 
21 384 bp, sequence ends as well as short sequences were 
padded with the vector [0., 0., 0., 0.]. Padded base pairs were 
masked during training. If a subsequence only contained N 
bases, here referred to as “gap subsequence,” it was filtered 
out. Both strands, plus and minus, were used. Since the 
ATAC- and ChIP-seq data was PCR amplified and as such it 

Table 2. Model architecture and dataset explanation (short).

Model name Dataset Architecture

U-Net ATAC-seq 3 convolutional layers þ 3 transposed convolu
tional layers

Hybrid ATAC-seq U-Net þ 2 LSTM layers
BiHybrid ATAC-seq U-Net þ 2 BiLSTM layers
BiHybrid_02 ATAC-seq U-Net þ 2 BiLSTM layers þ 6 batch normalization layers

BiHybrid_03.1 
(see Fig. 2) 

ATAC-seq U-Net þ 2 BiLSTM layers þ 6 batch normalization layers 
þ 1 dropout layer (dropout probability of 0.3)

BiHybrid_03.2 ATAC-seq U-Net þ 2 BiLSTM layers þ 6 batch normalization layers 
þ 1 dropout layer (dropout probability of 0.5)

BiHybrid_04 ATAC-seq, filtered flagged sequences� U-Net þ 2 BiLSTM layers þ 6 batch normalization layers 
þ 1 dropout layer (dropout probability of 0.3)

BiHybrid_05 ChIP-seq (H3K4me3), filtered flagged sequences� U-Net þ 2 BiLSTM layers þ 6 batch normalization layers 
þ 1 dropout layer (dropout probability of 0.3)

Combined ATAC-seq, ChIP-seq (H3K4me3), filtered 
flagged sequences�

U-Net þ 2 BiLSTM layers þ 6 batch normalization layers 
þ 1 dropout layer (dropout probability of 0.3)

Combined_02 ATAC-seq, ChIP-seq (H3K4me3), filtered flagged 
sequences� (þ additional data)

U-Net þ 2 BiLSTM layers þ 6 batch normalization layers 
þ 1 dropout layer (dropout probability of 0.3)

Table 3. Species selection.

Models U-Net—BiHybrid_04 BiHybrid_05 Combined Combined_02

Training species B.distachyon B.distachyon B.distachyon A.chinensis
B.napus B.napus B.napus B.distachyon
B.natans B.oleracea B.natans B.napus
E.nindensis B.rapa B.oleracea B.natans
G.max C.reinhardtii B.rapa B.oleracea
M.domestica E.nindensis C.reinhardtii B.rapa
M.polymorpha G.max E.nindensis C.reinhardtii
O.thomaeum M.domestica G.max E.nindensis
S.lycopersicum O.brachyantha M.domestica G.max
Z.mays P.bretschneideri M.polymorpha M.domestica

P.persica O.brachyantha M.polymorpha
S.indicum O.thomaeum O.brachyantha
S.italica P.bretschneideri O.thomaeum
S.lycopersicum P.persica P.bretschneideri
Z.mays S.indicum P.miliaceum

S.italica P.persica
S.lycopersicum S.bicolor
Z.mays S.indicum

S.italica
S.lycopersicum
Z.mays

Validation species M.truncatula M.truncatula M.truncatula M.truncatula
S.polyrhiza S.polyrhiza S.polyrhiza S.polyrhiza

Test species A.thaliana A.thaliana A.thaliana A.thaliana
O.sativa O.sativa O.sativa O.sativa
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was not possible to determine from which strand a read origi
nated, the coverage information was always added to both 
strands. The model’s predictions for either ATAC-seq, 
ChIP-seq or both were compared to the experimental read 
coverage. The target data were represented per sample of 
experimental data. These were averaged beforehand, result
ing in one coverage track per NGS dataset and plant species.

Three main model architectures were examined on their 
performance. The first architecture consisted of convolu
tional layers followed by transposed convolutional layers for 
deconvolution (LeCun et al. 1989, LeCun and Bengio 1995). 
The deconvolution was added to output base-wise predic
tions. We refer here to this architecture as U-Net. To ensure 
that the new sequence lengths resulting from a convolution 
or deconvolution was correct, custom padding formulas were 
used (Supplementary Section S1.2). Our second approach 
was a hybrid network. A block of long short-term memory 
layers (LSTM) (Hochreiter and Schmidhuber 1997) was 
placed in between a convolutional layer block and a trans
posed convolutional layer block. The final approach was 
called bi-hybrid. Its architecture matched the hybrid architec
ture, except that the LSTM layers were replaced with bidirec
tional LSTM layers (BiLSTM) (Hochreiter and Schmidhuber 
1997, Schuster and Paliwal 1997). Each convolutional and 
transposed convolutional layer was followed in all three 
approaches by the ReLU activation function (Glorot et al. 
2011). Additional augmentations to the bi-hybrid network 
included adding batch normalization after each convolutional 
and transposed convolutional layer and adding a dropout 
layer after each BiLSTM layer except the last (Fig. 2). The 
Adam algorithm was used as an optimization method 
(Kingma and Ba 2014). The network’s base-wise predictions 
can be smoothed via a postprocessing step utilizing a rolling 
mean of a given window size.

We examined 10 different model setups (Table 2). The best 
model of each architecture and dataset combination was used 
to develop the next combination test. The model reaching the 
highest Pearson’s correlation for the validation set was 
deemed the best model. Pre-tests showed that including gap 
subsequences, subsequences of 21 384 bp only containing Ns, 
led to a considerably lower Pearson’s correlation. The pro
portion of gap subsequences in the total data was 0.6%. 
Normalizing the NGS coverage data through a general ap
proach of subtracting the average coverage from the dataset 
and using a ReLU transformation (Glorot et al. 2011) 
showed notably worse results during previous attempts. The 
approach of normalizing via an input sample was not feasible 
due to the considerable lack of available ATAC-seq input 
samples accompanying the experiments. Therefore, the target 
data was not adjusted towards its sequencing depth. For 
more information about the training process see 
Supplementary Section S1.3.

All models excluded gap subsequences, subsequences of 
21 384 bp only containing Ns. For more details on species 
selection and exact model parameters see Supplementary 
Table S4. Models excluding subsequences of unplaced scaf
folds and non-nuclear sequences during training and testing 
are denoted with �.

2.3 Species selection
2.3.1 Cross-species prediction models
Ensuring a diverse range of species in the training set, while 
simultaneously reserving enough data for validation and 

testing to effectively evaluate the models’ generalization abil
ity, proved difficult. At the start of development, the amount 
of high-quality, publicly available ATAC-seq data was low. 
Around 60% of the plant ATAC-seq data on SRA available 
up until July 2023 needed to be discarded after the final qual
ity control. This left the ATAC-seq data of the 14 plant spe
cies used in this study. In later development stages 3 more 
ATAC-seq datasets, from Actinidia chinensis, Panicum milia
ceum and Sorghum bicolor, and 2 more ChIP-seq datasets 

Figure 2. Predmoter architecture and prediction process. The bi-hybrid 
architecture with batch normalization and dropout is schematically 
depicted. Not to scale. Hyperparameters are examples and can vary. The 
base-wise predictions and smoothed predictions are from an example 
subsequence from A. thaliana.
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corresponding to acquired ATAC-seq datasets, from A.chi
nensis and M.polymorpha, became available. The low avail
ability of high-quality data, especially in early development 
stages, turned out to be a major hindrance in providing the 
network with an appropriate amount of data to train on. 
Data of two species, A.thaliana and O.sativa, was set aside as 
a hold-out test set. In doing so, both a dicot and a monocot 
species with available ATAC- and ChIP-seq datasets could be 
used for final evaluation. The same applied to the two valida
tion species, the dicot Medicago truncatula and the monocot 
S.polyrhiza (Table 3).

The resulting training, validation, and test split for the 
ATAC-seq models, ChIP-seq models and Combined models 
was around 90% training set, 5% validation set and 5% test 
set (Fig. 3a).

The model training pairs were visualized using the Uniform 
Manifold Approximation and Projection (UMAP) learning 
technique for dimension reduction (McInnes et al. 2018). 
Random training pairs, 5% of each species in the training set, 
were used to calculate the UMAPS. Gap subsequences and 
flagged sequences were not included. The chosen parameters 
were 10 neighbors, 0.1 minimum distance and the Euclidean 
distance metric. The additional species datasets, added in 
later development stages, were included. None of the avail
able settings and metrics for UMAP computation showed dis
tinct clusters based on the number of peaks within the 
input (Fig. 3b).

For the first seven models only the species for which exper
imental ATAC-seq data of high quality was available up until 
July of 2023 were trained on. The same applied to the 
BiHybrid_05 model using ChIP-seq data. The Combined 
model used both datasets. The Combined_02 model used 

additional data of four species. Gap subsequences were 
masked for all models; unplaced scaffolds and non-nuclear 
sequences were masked starting with model BiHybrid_04.

2.3.2 Intra-species models and leave-one-out 
cross-validation
Cross-species validation instead of an in-species split for the 
validation and training data was deemed closer to the real- 
world use case of predicting ATAC- and ChIP-seq data for an 
entire species. However, two models were trained using an 
intra-species training and validation split. These models, 
IS_10 and IS_20, used 10% and 20% of each species dataset 
as the validation set respectively. The input files were split us
ing Predmoter's intra_species_train_val_split.py script in 
“side_scripts.” This method ensured that each sequence ID 
from the original fasta file was fully assigned to either train
ing or validation set. Since the focus of this study is on cross- 
species prediction, all 25 plant species were used in leave- 
one-out cross-validation (LOOCV) to evaluate the best 
model setup on different species. All these setups were trained 
on ATAC- and ChIP-seq datasets simultaneously (Table 4). 
When performing LOOCV the model performance was eval
uated on all datasets available in the left-out species.

All models excluded gap subsequences, subsequences of 
21 384 bp only containing Ns, and flagged subsequences. For 
more details on exact model parameters see Supplementary 
Section S1.3 and Supplementary Table S4.

2.4 Peak calling
Peak calling on predictions and the experimental data was 
performed with MACS3 (Zhang et al. 2008). The sample 
bam files of the experimental data per species and dataset 

Figure 3. Dataset statistics and visualization. (a) The training, validation, and test split percentages for the ATAC-seq only models, the ChIP-seq only 
model (BiHybrid_05), the Combined model and the Combined_02 model are subdivided into the four domains monocots, dicots, mosses, and algae. 
For the Combined models, i.e. the multilabel prediction models, the percentages are shown per dataset, since both datasets were not available for all 
species (see Table 1). (b) UMAPs of training data. The species for which ATAC- and ChIP-seq data was available were used to create the UMAPs. One 
point represents one entire one-hot encoded subsequence of 21 384 bp of the training data. The points were colored by the number of peaks present in 
each subsequence (see Section 2.1.3). Peaks just partially overlapping a subsequence were counted as well.
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were merged. Then peaks were called on the merged bam files 
with MACS3’s “callpeak” command. The parameters for 
calling ATAC-seq peaks were the BAMPE format, a q-value 
of 0.01, keeping all duplicates, using the background lambda 
as local lambda (“no-lambda”) and the ungapped genome 
size of the species’ genome assembly (see Supplementary 
Table S2) as mappable genome size. For ChIP-seq peak call
ing two parameters, broad and a broad cutoff of 0.1, were 
added. The chosen q-value was the default 0.05. The ChIP- 
seq peaks of the species S.polyrhiza and Chlamydomonas 
reinhardtii were called using the format BAM instead of 
BAMPE. MACS3’s “bdgpeakcall” was used to call peaks on 
the test species predictions in bedGraph file format. The 
parameters for peak calling were the same MACS3’s 
“callpeak” determined for the experimental data, i.e. for 
paired end reads the minimum length and maximum gap are 
set to the predicted fragment size (Table 5). The cutoff value, 
threshold of the minimum read coverage to call a peak, was 
estimated by plotting the average read coverage of predic
tions around the TSS (see Fig. 5b).

Different cutoff values were also examined. For the ATAC- 
seq predictions of A. thaliana, cutoffs in the range of 1 to 25 
with a step of 1 and for O. sativa cutoffs in the range of 5 to 
200 with a step of 5 and including a cutoff of 1 at the start 
were chosen. For the ChIP-seq predictions of both species, 
cutoffs in the range of 5 to 100 with a step of 5 and including 
a cutoff of 1 at the start were chosen.

The selected parameters of MACS3’s “bdgpeakcall” for 
each test species and dataset are listed.

2.5 Metrics
Five metrics were used to evaluate model performance, the 
Poisson loss, the Pearson correlation coefficient (Pearson’s r), 
precision, recall, and F1.

The most prominent peak caller for ChIP-seq data, MACS 
(Zhang et al. 2008), which was also frequently used for 
ATAC-seq data (Hiranuma et al. 2017, Thibodeau et al. 
2018, Hentges et al. 2022), assumes that the ChIP-seq cover
age data is Poisson distributed. Therefore, PyTorch’s Poisson 
negative log likelihood loss function (Poisson loss) was used 
as the loss function for all models (Equation 1). 

loss ¼
1
n

Xn

i¼1
exi � yi � xi (1) 

The individual samples of the predictions (x) and the tar
gets (y) are indexed with i. The sample size is denoted with n 
(https://pytorch.org/docs/stable/generated/torch.nn.PoissonN 
LLLoss.html). This version of the Poisson loss caused the 
network to output logarithmic predictions. The desired, 
actual predictions were thus the exponential of the 

network’s output. The exponential distribution only consists 
of positive real numbers like the ATAC- and ChIP-seq 
read coverage.

To measure the “accuracy” of the model’s predictions, i.e. 
translating the Poisson loss into a human-readable number, 
the Pearson’s r was chosen (Equation 2), measuring the linear 
correlation between two variables. 

r ¼
Pn

i¼1 xi � �xð Þ yi � �yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xi � �xð Þ
2Pn

i¼1 yi � �yð Þ
2

q

þ E

(2) 

The sample size is denoted with n, the individual samples 
of the predictions (x) and the targets (y) are indexed with i. 
The additional epsilon (E) equals 1e-8 and is used to avoid a 
division by zero. A value of 1 represents a perfect positive lin
ear relationship, so Predmoter’s predictions and the experi
mental NGS coverage data would be identical. A value of 0 
means no linear relationship between the predictions and tar
gets. Finally, a value of −1 represents a perfect negative linear 
relationship.

Precision, recall, and F1 were used to compare predicted 
peaks to experimental peaks for both test species 
(Equations 3–5). A F1 score of 1 indicates that the predicted 
peaks are at the same position as the experimental peaks. The 
lowest score possible is 0. Precision, recall, and F1 were calcu
lated base-wise. Called peaks were denoted with 1, all other 
base pairs with 0. A confusion matrix containing the sum of 
True Positives (TP), False Positives (FP), and False Negatives 
(FN) for the two classes, peak and no peak, was computed 
for the average predicted coverage of both strands. Precision 
and recall were also utilized to plot precision-recall curves 
(PRC). The area under the precision-recall curve (AUPRC) 
was calculated using scikit-learn (Pedregosa et al. 2011). 
Flagged sequences were excluded from the calculations 
(see Section 2.1.2). The baseline AUPRC is equal to the 
fraction of positives, i.e. the percentage of peaks in the train
ing set (Saito and Rehmsmeier 2015). The peak percentages 
were calculated using the Predmoter’s compute_peak_f1.py 

Table 4. Model architecture and dataset explanation (additional models).

Model name Dataset Architecture Comment

IS_10 ATAC-seq, ChIP-seq (H3K4me3), 
filtered flagged sequences�
(þ additional data)

U-Net þ 2 BiLSTM layers þ 6 batch 
normalization layers þ 1 dropout 
layer (dropout probability of 0.3)

Intra-species training and valida
tion split (validation set: 10%)

IS_20 ATAC-seq, ChIP-seq (H3K4me3), 
filtered flagged sequences�
(þ additional data)

U-Net þ 2 BiLSTM layers þ 6 batch 
normalization layers þ 1 dropout 
layer (dropout probability of 0.3)

Intra-species training and valida
tion split (validation set: 20%)

“25 LOOCV  
models”

ATAC-seq, ChIP-seq (H3K4me3), 
filtered flagged sequences�
(þ additional data)

U-Net þ 2 BiLSTM layers þ 6 batch 
normalization layers þ 1 dropout 
layer (dropout probability of 0.3)

Validation set: each entire species 
dataset once

Table 5. Peak calling parameters.

Test species Dataset Minimum  
length

Maximum  
gap

Cutoff

Arabidopsis  
thaliana

ATAC-seq 149 149 5
ChIP-seq  

(H3K4me3)
201 201 15

Oryza sativa ATAC-seq 73 73 15
ChIP-seq  

(H3K4me3)
142 142 10
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script in “side_scripts.” The percentages are listed in 
Supplementary Table S8. 

precision ¼
TP

TPþFP
(3) 

recall ¼
TP

TPþFN
(4) 

F1 ¼ 2 �
precision � recall
precisionþ recall

(5) 

3 Results
Ten different cross-species prediction models were trained 
and evaluated (see Table 2). A comparison of the first three 
setups showed that the best base architecture was the 
BiLSTM layers placed in between a block of convolutional 
layers and a block of transposed convolutional layers, called 
“bi-hybrid” in Predmoter (Fig. 4). The architecture used three 
convolutional, three transposed convolutional and two 
BiLSTM layers. This setup outperformed the U-Net 

architecture, which was missing the LSTM layers in the mid
dle, as well as the hybrid architecture that utilized two one- 
directional LSTM layers. The U-Net performed worst out of 
all examined models. The model setup BiHybrid_02 added 
batch normalization after each convolutional and transposed 
convolutional layer. These additional six layers improved the 
results further. Introducing a dropout layer with a dropout 
probability of 30% between the two BiLSTM layers, model 
architecture BiHybrid_03.1, showed modest improvements. 
In contrast, the architecture BiHybrid_03.2 with a dropout 
probability of 50% did not improve the model. Filtering 
flagged sequences, meaning unplaced scaffolds and non- 
nuclear sequences, i.e. mitochondrial and chloroplast DNA, 
in the assembly where possible, was introduced for model 
ByHybrid_04. Filtering improved the test metrics slightly 
compared to BiHybrid_03.1. For this comparison the flagged 
sequences were also once excluded during testing, but not 
training of BiHybrid_03.1. This final stage of the models’ ar
chitecture and development was then used to train on ChIP- 
seq (H3K4me3) data instead of ATAC-seq data, denoted as 
model BiHybrid_05. Two Combined models were trained 

Figure 4. Performance of the best models per model setup across all species. The performance is measured via the Pearson correlation coefficient by 
comparing the experimental data (target) with the model’s prediction. Gap subsequences were excluded during testing. Results marked with � also 
excluded flagged subsequences (see Section 2.1.2). The validation and test species metrics are bordered by black boxes. The left block shows the 
results for ATAC-seq, the right one for ChIP-seq (H3K4me3). The performance of the 25 leave-one-out cross validation models (L1O) and two intra- 
species models (IS_10 and IS_20) is shown in the right section of each block. Grey boxes are used when there was no available high-quality experimental 
data for the given NGS dataset and species to compare predictions to. The model setups are listed in Table 2; the species selection in Table 3. Tabular 
results are listed in Supplementary Tables S6 and S7.
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using the setup of BiHybrid_04 and BiHybrid_05, but train
ing on ATAC- and ChIP-seq data simultaneously. For the 
ChIP-seq data, noise originating from non-nuclear sequences 
and unplaced scaffolds was not observed. The flagged data, 
therefore, would have been for the most part another set of 
the “negative” data with no associated ChIP-seq peaks. As 
the ATAC- and ChIP-seq data cannot be filtered indepen
dently in Predmoter's implementation, filtering of flagged 
sequences was used for both the BiHybrid_05 and the 
Combined model to ensure comparability. The Combined 
model performed better on the ChIP-seq data than the ChIP- 
seq model BiHybrid_05, but worse for the ATAC-seq data 
than the previous best ATAC-seq model BiHybrid_04. The 
Combined_02 model, containing 3 more ATAC-sed datasets 
and 2 more ChIP-seq datasets in the training set, outper
formed all other models.

The results were stable for the validation and test species 
during leave-one-out cross validation (Fig. 4). The two mod
els using the alga species B.natans and C.reinhardtii as valida
tion set respectively reached the lowest Pearson’s r values of 
0.1247 and −0.0379. Intra-species predictions are an easier 
task as the network does not need to generalize to the same 
degree neither across biological effects between species nor 
technical effects like sequencing depth; as expected, intra- 
species values were between 0.1 and 0.18 higher (Fig. 4). The 
intra-species model IS_10 trained on 90% of the data from 
each species and was validated on 10%. It achieved higher 
validation Pearson’s r values than the IS_20 model, which 
trained on 80% of the data from each species, did for its vali
dation set.

Next, the predictions for A.thaliana and O.sativa ±3 kbp 
around all TSS were examined. The results were stable, when 
focusing on these regions (Fig. 5a). The Combined_02 model 
still showed the highest Pearson correlation coefficients, be
tween 0.67 and 0.69 for the ATAC-seq predictions and be
tween 0.76 and 0.83 for the ChIP-seq predictions.

Average coverage enrichment ±3 kbp around the TSS of 
the ATAC- and ChIP-seq predictions and experimental data 
of both strands from A.thaliana and O.sativa showed that 
the predicted peaks had the similar pattern and were at the 
same location as the ones from the experimental data 
(Fig. 5b). For all five depicted ATAC-seq models and all three 
depicted ChIP-seq models the average read coverage of A. 
thaliana was predicted to be lower than the experimental cov
erage. The predicted ATAC-seq read coverage of O.sativa 
was higher than the experimental coverage. This applied to 
all five ATAC-seq models. The amplitudes of the predicted 
O.sativa ChIP-seq read coverage of all three models were 
close to the experimental read coverage.

A base-wise F1 was calculated to quantify predicted peaks 
matching experimental peaks (Fig. 6a). The highest F1 score 
for the ATAC-seq peaks of A.thaliana was the Combined 
model’s score of 0.2162. For the ATAC-seq peaks of O.sativa 
the Combined_02 model’s predictions resulted in the highest 
F1 score of 0.5152. In the case of A.thaliana, precision, the 
rate of false negatives, was notably higher than recall. This 
applied to all tested models. Precision was also slightly higher 
than recall for the ChIP-seq predictions for A.thaliana. For 
the ATAC-seq predictions of O.sativa recall was higher than 
precision. Precision and recall were balanced for the ChIP-seq 
predictions of O.sativa. The predicted ChIP-seq peaks 
showed higher F1 scores for both test species than the 

predicted ATAC-seq peaks. The Combined_02 model’s F1 

scores were the highest of all ChIP-seq coverage predict
ing models.

To understand whether the variation in precision and recall 
was reflecting fundamental differences in the model perfor
mance or simply differences in magnitudes and thresholding 
of the resulting peaks, we approximated one precision-recall 
curve per model by shifting the threshold, i.e. the cutoff value 
of MACS3’s “bdgpeakcall” (see Section 2.4), during peak 
calling (Fig. 6b). The highest resulting area under the 
precision-recall curve (AUPRC) of all ATAC-seq models had 
a value of 0.512 and 0.511 for the best A.thaliana and O.sat
iva predictions, respectively; indicating fundamentally similar 
discriminative performance between species, and that the pre
cision and recall imbalances are addressable by adjusting 
threshold parameters. The Combined_02 model showed not 
only the highest AUPRC values for the ATAC-seq predictions 
for both test species, but also for the H3K4me3 ChIP-seq pre
dictions with values of 0.823 and 0.786. All models achieved 
higher AUPRC values than the baselines, i.e. the fraction of 
peaks in the training set (see Section 2.5 and Supplementary 
Table S9).

To further improve the prediction quality, we implemented 
a postprocessing step; a rolling mean transformation with a 
given window size, to smooth the predictions. We tested three 
different window sizes per NGS dataset; window sizes 50, 
100, and 250 for the ATAC-seq predictions and window sizes 
250, 500, and 750 for the histone ChIP-seq predictions, as 
the histone ChIP-seq peaks were broader than ATAC-seq 
peaks (Fig. 6c). Smoothing the predictions resulted in higher 
AUPRC values for the ATAC-seq predictions for A.thaliana. 
The ATAC-seq predictions of O.sativa improved for window 
sizes 50 and 100, but not for 250. The ChIP-seq predictions 
improved for both test species for window sizes 250 and 500, 
but not for 750.

To get a more detailed insight into the models’ predictions, 
zoomed-in example predictions of the BiHybrid_04, 
BiHybrid_05, Combined and Combined_02 were examined 
(Fig. 7). The regions were manually selected to present exam
ples for regions with varying levels of prediction quality. By 
this, we aimed at gaining a deeper understanding of the pre
dictions beyond the quality control using global statisti
cal metrics.

The experimental and predicted peaks showed a common 
pattern of the ATAC-seq peaks around the TSS overlapping 
the 5’ UTR. They were usually flanked by a H3K4me3 peak 
downstream of the TSS. Occasionally the ATAC-seq peak 
was observed between two histone ChIP-seq peaks, one 
downstream of the TSS and one upstream of the ATAC-seq 
peak (Fig. 7). The ATAC-seq predictions for A.thaliana 
showed missing peaks in a few regions compared to the ex
perimental data and in general a lower read coverage 
(Fig. 7a). The ChIP-seq predictions showed no visible outliers 
compared to the experimental data (Fig. 7b). All ATAC-seq 
models examined predicted a higher background noise for O. 
sativa than is present in the experimental data (Fig. 7c). 
However, the BiHybrid_04 and the Combined model pre
dicted most distinct ATAC-seq peaks in the depicted region, 
the Combined_02 model predicted all. All models predicted 
two H3K4me3 ChIP-seq peaks and one ATAC-seq peak for 
O.sativa around 1070 and 1075 kbp that weren’t supported 
by the experimental data (Fig. 7c and d). The other predicted 
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peaks in the region were at the same position as the experi
mental peaks.

Predmoter showed a positive linear correlation between in
ference times and genome length (Supplementary Subsection 
S1.4, available at Bioinformatics Advances online). Inference 
took longer the more NGS datasets were predicted simulta
neously. Predmoter took 2.84 minutes to predict ATAC- and 
ChIP-seq data together for A. thaliana. For O. sativa infer
ence took 11.21 minutes.

4 Discussion
The identification of CREs is crucial in any attempts to recon
struct gene regulatory networks. In complex genomes, 

knowledge is mostly concentrated on coding sequences. 
Studies focusing on the complex genetic mechanisms behind 
gene regulation fall behind. The high costs and time invest
ments needed to create ATAC- or ChIP-seq libraries are bar
riers in the way to unravel the natural variation of gene 
regulation, especially in non-model plants. We developed 
Predmoter, a low-threshold, fast and precise DNN that uses 
the target DNA sequence as input and outputs predicted 
ATAC-seq and ChIP-seq coverage in human-readable format.

Predmoter used both the positive and negative strand as 
the model’s input. The ATAC- and ChIP-seq read coverage 
information was also added to both strands (see Section 2.2). 
The advantages were that open chromatin and closed chro
matin regions always apply to both strands, so the addition 

Figure 5. Performance of the best models per model setup and test species þ/- 3 kbp around all TSS. (a) The average predicted read coverage for each 
model and dataset of both strands was compared to the average experimental read coverage of both strands via Pearson’s correlation. (b) The average 
experimental read coverage (target/year) and predicted ATAC- and ChIP-seq read coverage in reads per bp are shown for A.thaliana and O.sativa. The 
predictions of five of the nine best ATAC-seq models and of all three best ChIP-seq models are depicted. See Supplementary Figure S1 for a version of 
this figure including the predictions of all models. Flagged sequences were excluded from the calculations (see Section 2.1.2).
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to both strands allowed for built-in data augmentation. The 
model benefited from the BiLSTM layers extra information 
(Fig. 4), as they allowed the network to anticipate a gene re
gion when predicting a promoter (Schuster and Paliwal 
1997). Also, the bidirectional interpretation of the data was 
an appropriate inductive bias, given that Predmoter used 
unstranded data. Even though batch normalization eliminates 
the need for dropout layers in some cases (Ioffe and Szegedy 
2015), adding one dropout layer with a dropout probability 
of 30% to Predmoter boosted the predictions (Fig. 4). The 
predictions were improved for the ChIP-seq data when pre
dicting both datasets together (Fig. 4). The subsequent slight 
drop-off in the Combined model’s ATAC-seq predictions 
could be a result of the network having around 20% more 
ChIP-seq data than ATAC-seq data available to training on 
(Fig. 3a). The network was skewing just lightly to the larger 
dataset, at least when looking solely at the Pearson correla
tion coefficients (Fig. 4). This difference was lessened by add
ing more data to the training set. The Combined_02 model’s 
predictions were the closest to the target data for both NGS 
datasets (Fig. 4). Its training set only contained around 9% 
more ChIP-seq than ATAC-seq data (Fig. 3a), as well as 
5.28% percent more ChIP-seq peaks than ATAC-seq peaks 
instead of 5.98% (see Supplementary Table S8). These results 
suggest that Predmoter’s multi label predictions improve by 
lowering the difference in abundance between the labels/tar
get data, especially between the positive data, i.e. the peaks.

During leave-one-out cross validation, the two models us
ing the alga species B.natans and C.reinhardtii as validation 
set stood out for reaching the lowest Pearson’s r values 
(Fig. 4). When inspecting the average read coverage around 
the TSS for these two species (Fig. 1), especially C.reinhard
tii’s amplitude position and shape didn’t quite match the data 
from other species. It might be beneficial to exclude alga spe
cies in the future until enough data becomes publicly avail
able to train a dedicated alga model. Both intra-species 
prediction models achieved higher Pearson’s r values than the 
best cross-species prediction model, the Combined_02 model 
(Fig. 4). However, the cross-species prediction validation and 
test metrics show what predictive quality one can expect 
when predicting on a species not included in the training set. 
In comparison, intra-species prediction models don’t have to 
generalize to the same degree, complicating inferring and pos
sibly lowering the predictive quality for a new species.

When using the average coverage of predictions around the 
TSS region (Fig. 5b) to infer the cutoffs for peak calling, the 
resulting F1 scores were high for the ChIP-seq predictions of 
both test species; the best scores were 0.7388 and 0.7358 for 
A.thaliana and O.sativa, respectively (Fig. 6a). The best F1 

scores for ATAC-seq were lower with 0.2162 and 0.5152. 
The lower F1 score for the A.thaliana ATAC-seq predictions 
was found to be a matter of thresholding; the precision-recall 
curve resulted in a AUPRC of 0.512 (Fig. 6b). All AUPRC 
values exceeded their baseline. The baseline AUPRC is 

Figure 6. Peak F1 statistics and precision-recall curves. (a) The F1 of the predicted peaks versus the experimental peaks was calculated per model, test 
species and NGS dataset. (b) The precision-recall curves were calculated per test species, model, and dataset. The threshold/cutoff points are marked by 
circles. The exact parameters and cutoffs used are listed in Section 2.4. Two AUPRC baselines (dashed lines) are depicted. Baseline 2 only applied to the 
Combined_02 model’s predictions, as this model trained on additional data (see Section 2.3.1). (c) The Combined_02 model’s predictions were smoothed 
utilizing a rolling mean with a given window size (ws). The precision-recall curves were calculated per test species, window size, and dataset. The 
threshold/cutoff points are marked by circles. The exact parameters and cutoffs used are listed in Section 2.4. The AUPRC baseline (dashed line) is 
depicted. Flagged sequences were excluded from peak calling and F1, precision and recall calculations (see Section 2.1.2).
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Figure 7. Example predictions of Predmoter. Example regions comparing Predmoter’s unsmoothed predictions to experimental data (target/Y) for the 
test species (a, b) A. thaliana and (c, d) O. sativa in 5’ to 3’ direction are depicted. The plots (a) and (c) show the ATAC-seq read coverage per bp, the plots 
(b) and (d) show ChIP-seq (H3K4me3) read coverage per bp.
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defined as the fraction of positives in the training set (Saito 
and Rehmsmeier 2015), here the peaks. The best model, the 
Combined_02 model, exceeded it’s the baseline ATAC-seq 
AUPRC of 0.0699 by around 0.44 for both test species and 
the baseline ChIP-seq AUPRC of 0.1227 by 0.7 for A.thali
ana and 0.6633 for O.sativa (Fig. 6b). These results highlight 
Predmoter’s predictive strength, which can be even further 
improved by smoothing the original predictions (Fig. 6c).

Nevertheless, Predmoter performs best on ChIP-seq data. 
The Pearson’s r and AUPRC values for the ChIP-seq predic
tions of all models were higher than the ones for the ATAC- 
seq predictions (Figs 4–6). H3K4me3 peaks mostly appear in 
1000 to 2000 kbp around the TSS including highly conserved 
gene regions (Santos-Rosa et al. 2002, Benayoun et al. 2014). 
Even though CREs were shown to be highly conserved within 
and among plant species, also between monocots and dicots 
(Yamamoto et al. 2007, Lu et al. 2019), they exhibit hetero
geneity. The TATA-box, for example, a core promoter ele
ment characterized by repeating T and A base pairs (Lifton 
et al. 1978), was found to be present in 16%–22% of core 
promoters in eight plant species, in 18% of the A.thaliana 
and O.sativa core promoters (Kumari and Ware 2013). 
Therefore, the H3K4me3 peaks were probably easier to learn 
for the network. This could be supported by the models train
ing only on ChIP-seq data or both datasets also reached their 
highest validation Pearson correlation coefficient faster (see 
Supplementary Table S5). The percentage of ChIP-seq peaks 
in the training set, around 12%, was also higher than the 
ATAC-seq peak percentage of around 6%–7% (see 
Supplementary Table S8). This imbalance probably also con
tributed to the ChIP-seq predictions being closer to the target 
data than the ATAC-seq predictions.

Looking into the predictions up close allowed us to inspect 
why some peaks might not get predicted (Fig. 7). The ATAC- 
seq predictions for A.thaliana showed lower read coverage 
(Figs 5b and 7). The cause might be the in general lower read 
coverage of the dicot training data in comparison to the 
monocots (Fig. 1b) or rather the 4% less peaks in the dicot 
training data in early development stages, in later develop
ment stages 2.4% less (see Supplementary Table S8). This 
might cause higher predicted read coverage for monocots and 
therefore easier to distinguish peaks. Moreover, predicted 
peaks in regions missing experimentally verified peaks might 
appear, because the observed most common pattern was an 
ATAC-seq peak upstream of a H3K4me3 peak (Fig. 7). The 
network was likely trying to adhere to that pattern even if the 
target data did not support it. Another reason for not predict
ing experimentally verified peaks or predicting peaks in 
regions where there are none in the experimental data could 
be the incompleteness of the experimental data. The experi
mental data originated from different tissues and was treated 
differently as well (see Supplementary Table S3). The A. thali
ana ATAC-seq data for example used DNA extracted from 
leaves (Lu et al. 2019) and roots (Maher et al. 2018), while 
the ChIP-seq data used DNA from whole seedlings under 
cold treatment and after recovery (Xi et al. 2020) and an un
known tissue/treatment. Not all genes are always active in ev
ery tissue. The choice of tissues and environmental influences 
can influence the chromatin makeup of the plants’ DNA. 
Hence, the experimental data shown was not the ground 
truth. With the currently publicly available, high-quality data 
for ATAC-seq and H3K4me3 ChIP-seq, the possibility of us
ing as many tissues or treatments as possible to train on or 

even create dedicated models to specific plant tissues like 
roots is not yet feasible.

Since ATAC-seq and H3K4me3 ChIP-seq peaks were seen 
in this study to be close to each other but only partially over
lap, other NGS data showing a more similar pattern to 
ATAC-seq data could improve the predictions for the ACRs. 
The nearest options would be DNase-seq (Crawford et al. 
2006) or FAIRE-seq (Giresi et al. 2007). Both are less 
sensitive than ATAC-seq. Another option could be MNase- 
defined cistrome-Occupancy Analysis (MOA-seq), a high- 
resolution, high-throughput, and genome-wide strategy to 
globally identify putative TF-binding sites within ACRs 
(Savadel et al. 2021). The only hindrance would again be the 
publicly available high-quality data. For example, MOA-seq 
is too recent to have large amounts of existing published 
data. Additional ChIP-seq data, like H3K4me1, H3K27ac or 
H3K27me3, marking enhancers (Heintzman et al. 2009, 
Creyghton et al. 2010, Rada-Iglesias et al. 2010) or 
H3K4me2 marking inactive genes (Santos-Rosa et al. 2002) 
could be utilized as well. Weighting the monocot and dicot 
data as well as the ATAC- and ChIP-seq data to combat over
fitting towards a domain or NGS dataset could improve the 
predictions. Also, a method of normalizing the NGS read 
coverage without relying on experimental input data could 
help the network to focus more on peak positions instead of 
peak amplitudes. Finally, by incorporating peak caller results 
like from MACS (Zhang et al. 2008) into the predictive pro
cess of Predmoter, the option of a binary classification model 
could be added. DL was already used with ATAC-seq data 
and MACS2 to predict regulatory factor binding activity 
(Hiranuma et al. 2017), to predict enhancers (Thibodeau 
et al. 2018), to optimize ATAC-seq peak calling (Hentges 
et al. 2022) or to predict transcription-factor binding on a ge
nomic scale (Cazares et al. 2023). A drawback to using a 
peak caller would be the introduction of another abstraction 
level by using the output of another tool/algorithm. In gen
eral, more ATAC-seq data from a wider variety of species 
and tissues would likely improve Predmoter’s predictions 
more than additional NGS data, since the additional ATAC- 
seq data used to train the Combined_02 model likely caused 
it to outperform the Combined model (Fig. 4).

We are aware that Predmoter is strongly limited by the 
quality and abundance of ATAC- and ChIP-seq data. 
However, our framework allows for easy retraining with ad
ditional high-quality NGS data. This also includes re-training 
with selected datasets for tissue- or condition specific treat
ments. In conclusion, Predmoter will help identifying CREs 
and so gaining further insight into gene regulatory networks 
in plants.
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