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Demultiplexing
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Demultiplexing	Stats
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VI. Reads mapped to index/ Index distribution  

Lane Sample Barcode 
sequence PF Clusters % of the 

lane 
Yield 

(Mbases) 
% PF 

Clusters 
% >= Q30 

bases 
Mean Quality 

Score 
7 311 GTCCGC 34,383,904 8.6 5,192 100 93.92 38.91 
7 312 GTGAAA 29,615,024 7.41 4,472 100 94.42 39.04 
7 313 GTGGCC 33,503,347 8.38 5,059 100 95.98 39.47 
7 314 GTTTCG 31,257,959 7.82 4,720 100 95.13 39.24 
7 315 CGTACG 30,104,699 7.53 4,546 100 96.17 39.51 
7 316 GAGTGG 38,777,553 9.7 5,855 100 88.83 37.53 
7 317 ACTGAT 37,039,274 9.27 5,593 100 95.71 39.4 
7 318 ATTCCT 35,883,841 8.98 5,418 100 87.71 37.24 
7 319 ATCACG 24,474,812 6.12 3,696 100 94.61 39.09 
7 320 CGATGT 35,103,812 8.78 5,301 100 94.99 39.2 
7 321 TTAGGC 27,689,677 6.93 4,181 100 96.18 39.52 
7 322 TGACCA 26,135,742 6.54 3,946 100 95.34 39.3 
7 Undetermined unknown 15,708,905 3.93 2,372 15.86 93.87 38.84 
8 323 ACAGTG 32,627,470 7.99 4,927 100 96.32 39.57 
8 324 GCCAAT 36,955,093 9.05 5,580 100 96.28 39.56 
8 325 CAGATC 31,784,966 7.78 4,800 100 95.69 39.4 
8 326 ACTTGA 29,892,017 7.32 4,514 100 95.58 39.37 
8 327 GATCAG 30,164,205 7.38 4,555 100 95.81 39.44 
8 328 TAGCTT 32,620,324 7.99 4,926 100 94.82 39.17 
8 329 GGCTAC 32,216,852 7.89 4,865 100 96.34 39.58 
8 330 CTTGTA 33,811,657 8.28 5,106 100 94.96 39.2 
8 331 AGTCAA 31,813,716 7.79 4,804 100 93.87 38.91 
8 332 AGTTCC 35,091,218 8.59 5,299 100 96.45 39.61 
8 333 ATGTCA 31,647,609 7.75 4,779 100 95.5 39.36 
8 334 CCGTCC 29,550,632 7.23 4,462 100 95.34 39.31 
8 Undetermined unknown 20,307,719 4.97 3,066 21.42 94.64 39.03 
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The	.fastq	format
The .fastq format 

@HWI-ST737:111:8164GABXX:1:1101:1367:2206 1:N:0:CGATGT
CGGTAGATAGCAGATGCAGTCAAGTAACGGCCATGACGAGGGTCAGCAGCACACATCATGTTCTTTGCGTCCCACATTTGTTGTGTGAGGTCTGGAACAGT
+
CCCFFFFFHHHGHGIIJJJHIIJJJIJIGIHIJBGGGIGGGI;FHDCECC(..@D3=;3=7?>?;C>),,3>@C@8@@D;@CA?(+2:C(99>9?######
@HWI-ST737:111:8164GABXX:1:1101:1486:2206 1:N:0:CGATGT
CCCAAATAGAACAATATCCCTTCTAAAAATCCCATTTTTAATGGTGGGTTCGGAAGATTTGCAGCAATAAACCACAAATTTGTTGCTAGATTTACATATCT
+
CCCFFFFFHHHHHJJJJJJJJJJJJJJJIIGIJJJJJJJJIIJIFHIJ?DFHJBCGG>GHC:CH3(77AEE;?(;?=C>>C;CC=;;AAC:AA########
@HWI-ST737:111:8164GABXX:1:1101:1419:2214 1:N:0:CGATGT
GGATTTTTCACCTATCTTGCAGTTTGAACAGGACCCTGTTCAGATTCTTGATGCTTTGTTGCCATTGTATTTGAACAGTCAGATCTTGAGGTCTTTACAGG
+
@C@FDFFFHHHHHJJJJJJJJJJJJJJGIIJJIHGGIGJJJJJGJIIJJGGGGIGIIGHIGIJ<DGH@)@CHE=DDHHGHAE>CEHECCF@;ACEEA####
@HWI-ST737:111:8164GABXX:1:1101:1255:2232 1:N:0:CGATGT
CACTGGATTTCACTGTCCAATTCTCGAATTTAAAGGTTTCACTTTTCAACCCTAAACTTTCAGCTATTTTCTTTCCAATCTCCTTAGCAATCACATGTATA
+
@?@FFEADBHDDHIGDBFH@FHFGHIFGGHH@FGGHFGGDFHIIGIIBHAFHIIGHGGHGFGI4BCHIII>@@AG@;@ECEECEHHD@CDFEA>CCC>3>;
@HWI-ST737:111:8164GABXX:1:1101:1416:2232 1:N:0:CGATGT
CCGAAGGGCATCAGCATAGGAGCTCATATCGGTTAAGATCACAAGGACATGTTTCCCACATTCATATGCCAAATATTCTGCTGTGGTGAGAGCAATACGAG
+
<<?DDDDFGFDHDHIIIIIGAHGHIIEIFEHIF:GHHB>BDFH3F?FDHGGEEH;=@GDDCAEIGDA3?EAEEFB?C?DDCCCCC@CB>A-:?>9:5:?89
@HWI-ST737:111:8164GABXX:1:1101:1357:2236 1:N:0:CGATGT
CGACGAAATCACATCCTCAGGTACGCTTCAACTACACGTCTGCAACTTCCTCAACGTGTTAATCGAGAGCAAACGCATCGATATGATCAAGGAGATCATTA
+
@@?BDD>DHHDDBHDDHH?FBFHGEHGDDHGIIGIFBFFAGHGDEG3B8=FHC>;;DEHACEH756?2??CCCB?:>?@BCBBBC>:(:>:4<8<>@3>:3
@HWI-ST737:111:8164GABXX:1:1101:1390:2249 1:Y:0:CGATGT
CTCATCTTTCACTGTTAAAGCCGAGGGTGTGAGCAAGAACTCTGCACCCTAGTTCCAAAAGACTCAACTGATGATTCGTTTGACGTACACCCTTGATGCAA
+
;<<:?>1>><=9?@?<5=@##################################################################################
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The	.fastq	format

▪ File	name	convention


▪ <sample	name>_<barcode	sequence>_L<lane	(0-padded	to	3	digits)>_R<read	
number>_<set	number	(0-padded	to	3	digits>.fastq.gz


▪ e.g.	NA10831_ATCACG_L002_R1_001.fastq.gz 

▪ The	sequence	identifier


▪ @<instrument>:<run	number>:<flowcell	ID>:<lane>:<tile>:<x-pos>:<y-
pos><read>:<is	filtered>:<control	number>:<index	sequence>


▪ e.g.	@HWI-ST737:111:8164GABXX:1:1101:1367:2206	1:N:0:CGATGT
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Quality	control	–	FastQC
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Read	trimming

Quality	control
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Read	trimming

▪ Trimmomatic	removes


▪ PCR	primers


▪ Adapter	sequences


▪ Low-quality	bases

P5 Rd1 SP Rd2 SP P7IndexcDNA Insert
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Quality	control	–	FastQC
After	trimmingBefore	trimming
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Alignment	&	Quantification
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Read	mappers

https://www.ebi.ac.uk/~nf/hts_mappers/

https://www.ebi.ac.uk/~nf/hts_mappers/
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Alignment	&	Quantification

Filtered	reads
ACCCCAATGAGCCCTACCGTAATCT

ACCCCAATGAGCCCTACCGTAATCT
GGACAGAGGAGTATCTACAATAGTA

GGACAGAGGAGTATCTACAATAGTA
GGACAGAGGAGTATCTACAATAGTA

GGACAGAGGAGTATCTACAATAGTA

TAGGAAAGATTTAGAGGGAAATGTC

TAGGAAAGATTTAGAGGGAAATGTC
TAGGAAAGATTTAGAGGGAAATGTC

TTGATTAAACTATTCTGCTGCACAG

TTGATTAAACTATTCTGCTGCACAG
TTGATTAAACTATTCTGCTGCACAG

TTGATTAAACTATTCTGCTGCACAG

TTGATTAAACTATTCTGCTGCACAG

TTGATTAAACTATTCTGCTGCACAG

CGAGGATTTACACGTGTAGACGCAGTGAGAAAGTAGGA

Reference	genome	/	

transcriptome
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in the human genome. 5.1% of the reads spanned two exons with 
an intermediate-length anchor (8–15 bp) on one exon. Alignment 
programs that rely on a global index have great difficulty  
mapping these anchors uniquely (for example, an 8-bp sequence 
is expected to occur ~48,000 times in the human genome). This 
is where the use of a local index provides a substantial advan-
tage. In HISAT, each local index covers 64,000 bp; thus, over 90% 
of annotated human introns are completely contained in one of 
these indexes. After mapping the longer part of a read to identify  
the relevant local index, HISAT can usually align the remaining 
small anchor within a single local index rather than searching 
across the whole genome. On average, an 8-bp sequence will occur 
just once in a local index of this size.

In our simulated data, 4.2% of the reads span two exons with 
a very short anchor (1–7 bp) in one exon. Because these anchors 
are so short, the best approach is, where possible, to align these 
reads by making use of splice site information found by aligning 
other reads in the same data or by using known splice sites. Note 
that ~3.1% of reads span more than two exons. In many mapping 
algorithms, the alignment of short- and intermediate-anchored 
reads and reads spanning more than two exons (12.4% of the total 
reads) takes up to 30–60% of the total run time, and many of those 
reads are ultimately aligned incorrectly or left unaligned.

HISAT solves these challenging spliced-alignment problems 
using hierarchical indexing and several alignment strategies 
specifically designed for handling different read types (Online 
Methods).

Comparison to other tools for accuracy and speed
We compared the accuracy and speed of HISAT to several of 
the leading spliced-alignment programs, including STAR11, 
GSNAP10, OLego15 and TopHat2 (ref. 9), using both simulated 
and real reads. We tested three versions of HISAT (HISATx1, 
HISATx2 and HISAT), which we ran with different parameters. 
HISATx1 uses a one-pass approach that aligns each pair of  
reads independently of others. HISATx2 is a two-pass version 
of HISAT to mimic the two-step approach used in TopHat2.  

In this version, the first run reports a list of splice sites  
supported by reads with long anchors. The second run makes use  
of that splice site information to align reads with short anchors 
(Online Methods). As expected, HISATx2 takes twice as long to 
run, but it discovers more alignments. The STAR program also 
has a two-pass mode, denoted here as STARx2, which we included 
in our evaluation. We found that STARx2 was more than twice as 
slow as STAR’s default one-pass mode because, before its second 
pass, STAR must build a new index for the splice junctions found 
in the first pass.

The third variant of HISAT (its default version) combines the 
first two ideas to gain sensitivity without the large performance cost 
incurred by running the program twice. In this algorithm, we allow 
HISAT to make use of splice sites found during the alignment of 
earlier reads when aligning later reads in the same run. This hybrid 
approach finds almost all the alignments found by HISATx2, with 
run time nearly as fast as that of HISATx1. To the best of our knowl-
edge, this hybrid approach is the first such single-pass method that 
bypasses the time-consuming step of remapping reads but matches 
the sensitivity of two-pass methods. HISAT also includes an option 
to use known splice sites from gene annotations.

For our simulated data sets, we generated 20 million 100-bp reads 
with a mismatch rate of 0.5% and up to three mismatches per read 
from 17,647 randomly chosen transcripts from known protein- 
coding genes, based on the GRCh37 assembly of the human 
genome. Each transcript was assigned expression values according  
to a model provided by the Flux Simulator16 (Supplementary 
Note). Because we know the true alignments for the simulated 
reads, we can calculate alignment sensitivity as well as the sensi-
tivity and precision of splice site detection for each program. We 
also ran all programs on an error-free simulated data set. These 
results are consistent with the results on data with mismatches 
(Supplementary Fig. 1 and Supplementary Table 1).

We plotted the alignment speed of the programs for all reads 
(Fig. 2). HISATx1 and HISAT were fastest, at 121,331 and 110,193 
reads processed per second (r.p.s.), respectively, and STAR was 
third fastest at 81,412 r.p.s. As expected, HISATx2 (56,397 r.p.s.) 
and STARx2 (40,639 r.p.s.) took approximately twice as long as 
HISATx1 and STAR, respectively. Note that the speed reported 
for STARx2 did not include the index-building time. GSNAP was 
substantially slower at 14,611 r.p.s., and the slowest programs 
were TopHat2 (1,954 r.p.s.) and OLego (848 r.p.s.).

62.4% (M)

3.1% (gt_2M)

4.2% (2M_1_7)

5.1% (2M_8_15)

25.1% (2M_gt_15)

b

M 2M_gt_15

gt_2M

2M_8_15 2M_1_7

e1 e2 e3

Readsa
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Intron

Figure 1 | RNA-seq read types and their relative  
proportions from 20 million simulated 100-bp  
reads. (a) Five types of RNA-seq reads: (i) M,  
exonic read; (ii) 2M_gt_15, junction reads  
with long, >15-bp anchors in both exons;  
(iii) 2M_8_15, junction reads with intermediate,  
8- to 15-bp anchors; (iv) 2M_1_7, junction  
reads with short, 1- to 7-bp, anchors; and (v)  
gt_2M, junction reads spanning more than two  
exons. (b) Relative proportions of different types of 
reads in the 20 million 100-bp simulated read data.
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Figure 2 | Alignment speed of spliced alignment software for 20 million 
simulated 100-bp reads. Alignment speed for all read types (defined in 
Fig. 1) combined, measured as the number of reads processed per second 
by the indicated tools. Supplementary Figure 2 provides the alignment 
speed for each type of read separately.

Kim,	D.,	Langmead,	B.,	and	Salzberg,	S.L.	(2015).	HISAT:	a	fast	spliced	
aligner	with	low	memory	requirements.	Nature	Methods	12:	357–360.
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Pseudo-mapping	(e.g.	Kallisto)
RNA-Seq	read

Overlapping	transcripts

Index:	Transcriptome	de	Brujin	Graph	(T-DBG)
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B R I E F  C O M M U N I C AT I O N S

To validate and benchmark kallisto, we tested it on a set of 20 
RNA-seq simulations generated with the program RSEM (RNA-Seq  
by Expectation Maximization)9, as well as on RNA-seq data from 
the Sequencing Quality Control Consortium (SEQC)10 for which 
quantitative PCR (qPCR) can be used as an independent validation  
of quantification. The transcript abundances and error profiles 
for the simulated data were based on the quantification of sample  
NA12716_7 from the Genetic European Variation in Health  
and Disease (GEUVADIS) data set11. To accord with GEUVADIS 
samples, the simulations consisted of 30 million reads. We examine 
the quality of the kallisto pseudoalignments as compared to pseu-
doalignments extracted from Bowtie2 alignments. The two methods  
agreed exactly on the set of reported transcripts for 70.7% of the 
reads, but when they differed on the (pseudo)alignment of a read, 
Bowtie2 reported 8.02 transcripts on average compared to 4.96 for 
kallisto. Despite being much more specific than Bowtie2, kallisto had  
almost 100% sensitivity. The transcript of origin was contained in 
the set of reported transcripts for 99.89% of the reads, only 0.1% 
less than with Bowtie2 (99.99%). On the real data used as the basis 
for the simulations (NA12716_7), the programs displayed similar 
characteristics. The two methods agreed exactly for 66.22% of reads 
where both (pseudo)aligned, and for differing reads Bowtie2 aligned 
to 8.94 transcripts on average, versus 4.86 for kallisto. As expected, 
the number of (pseudo)aligned reads was lower for the real data, with 
86.5% of the reads aligned by Bowtie2 versus 90.8% pseudoaligned 
by kallisto.

The accuracy of kallisto is similar to those of existing RNA-seq 
quantification tools (Fig. 2a and Supplementary Fig. 2) and enables 
a substantial improvement over Cufflinks2 and Sailfish5. The inferior 
performance of Cufflinks can be attributed to its limited application 
of the EM algorithm in cases where reads multi-map across genomic 
locations12. Unlike Sailfish5, which shreds reads into k-mers for fast 
hashing, resulting in a loss of information, kallisto’s pseudoalignments 
explicitly preserve the information provided by k-mers across reads 
(Supplementary Fig. 1).

All programs have reduced performance on paralogs owing to 
the similarity among genes within a family, but kallisto remains 
highly competitive, again almost matching RSEM’s performance 
(Supplementary Figs. 3 and 4). To test kallisto’s suitability for allele-
specific expression quantification, we simulate reads from a transcrip-
tome with two distinct haplotypes. The Spearman’s correlation for 
kallisto was 0.833 vs. 0.848 for RSEM, 0.830 for eXpress and 0.706 for 
Sailfish, showing that kallisto is suitable for allele-specific expression. 
Notably, the simulation was based on RSEM, for generating both the 
parameters and then the data using them.

We also tested kallisto on SEQC data that has independently been 
quantified with qPCR. Kallisto performed similarly to other programs 
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Figure 1 Overview of kallisto. The input consists of a reference transcriptome 
and reads from an RNA-seq experiment. (a) An example of a read (in black) 
and three overlapping transcripts with exonic regions as shown. (b) An index 
is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where 
nodes (v_1, v_2, v_3, ... ) are k-mers, each transcript corresponds to a 
colored path as shown and the path cover of the transcriptome induces a  
k-compatibility class for each k-mer. (c) Conceptually, the k-mers of a read are 
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping 
(black dashed lines) uses the information stored in the T-DBG to skip k-mers 
that are redundant because they have the same k-compatibility class. (e) The  
k-compatibility class of the read is determined by taking the intersection  
of the k-compatibility classes of its constituent k-mers.
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Figure 2 Performance of kallisto and other methods. (a) Accuracy of kallisto, 
Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20 RSEM simulations 
of 30 million 75-bp paired-end reads based on the abundances and 
error profile of GEUVADIS sample NA12716_7 (selected for its depth of 
sequencing). For each simulation, we report the accuracy as the median 
relative difference in the estimated read count of each transcript. Estimated 
counts were used rather than transcripts per million (TPM) because the latter 
is based on both the assignment of ambiguous reads and the estimation of 
effective lengths of transcripts, so a program might be penalized for having  
a differing notion of effective length despite accurately assigning reads.  
The values reported are means across the 20 simulations (the variance 
was too small to be visible in this plot). Relative difference is defined as 
the absolute difference between the estimated abundance and the ground 
truth divided by the average of the two. (b) Total running time in minutes 
for processing the 20 simulated data sets of 30 million paired-end reads 
described in a. All processing was done using 20 cores, with programs being 
run with 20 threads when possible (Bowtie2, TopHat2, RSEM, Cufflinks) and  
20 parallel processes otherwise (eXpress, kallisto). Each box represents one 
dataset. Since eXpress and kallisto process all datasets in parallel, the only 
quantification time shown is the maximum of all the quantifications.
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samples, the simulations consisted of 30 million reads. We examine 
the quality of the kallisto pseudoalignments as compared to pseu-
doalignments extracted from Bowtie2 alignments. The two methods  
agreed exactly on the set of reported transcripts for 70.7% of the 
reads, but when they differed on the (pseudo)alignment of a read, 
Bowtie2 reported 8.02 transcripts on average compared to 4.96 for 
kallisto. Despite being much more specific than Bowtie2, kallisto had  
almost 100% sensitivity. The transcript of origin was contained in 
the set of reported transcripts for 99.89% of the reads, only 0.1% 
less than with Bowtie2 (99.99%). On the real data used as the basis 
for the simulations (NA12716_7), the programs displayed similar 
characteristics. The two methods agreed exactly for 66.22% of reads 
where both (pseudo)aligned, and for differing reads Bowtie2 aligned 
to 8.94 transcripts on average, versus 4.86 for kallisto. As expected, 
the number of (pseudo)aligned reads was lower for the real data, with 
86.5% of the reads aligned by Bowtie2 versus 90.8% pseudoaligned 
by kallisto.

The accuracy of kallisto is similar to those of existing RNA-seq 
quantification tools (Fig. 2a and Supplementary Fig. 2) and enables 
a substantial improvement over Cufflinks2 and Sailfish5. The inferior 
performance of Cufflinks can be attributed to its limited application 
of the EM algorithm in cases where reads multi-map across genomic 
locations12. Unlike Sailfish5, which shreds reads into k-mers for fast 
hashing, resulting in a loss of information, kallisto’s pseudoalignments 
explicitly preserve the information provided by k-mers across reads 
(Supplementary Fig. 1).

All programs have reduced performance on paralogs owing to 
the similarity among genes within a family, but kallisto remains 
highly competitive, again almost matching RSEM’s performance 
(Supplementary Figs. 3 and 4). To test kallisto’s suitability for allele-
specific expression quantification, we simulate reads from a transcrip-
tome with two distinct haplotypes. The Spearman’s correlation for 
kallisto was 0.833 vs. 0.848 for RSEM, 0.830 for eXpress and 0.706 for 
Sailfish, showing that kallisto is suitable for allele-specific expression. 
Notably, the simulation was based on RSEM, for generating both the 
parameters and then the data using them.

We also tested kallisto on SEQC data that has independently been 
quantified with qPCR. Kallisto performed similarly to other programs 
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Figure 1 Overview of kallisto. The input consists of a reference transcriptome 
and reads from an RNA-seq experiment. (a) An example of a read (in black) 
and three overlapping transcripts with exonic regions as shown. (b) An index 
is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where 
nodes (v_1, v_2, v_3, ... ) are k-mers, each transcript corresponds to a 
colored path as shown and the path cover of the transcriptome induces a  
k-compatibility class for each k-mer. (c) Conceptually, the k-mers of a read are 
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping 
(black dashed lines) uses the information stored in the T-DBG to skip k-mers 
that are redundant because they have the same k-compatibility class. (e) The  
k-compatibility class of the read is determined by taking the intersection  
of the k-compatibility classes of its constituent k-mers.
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Figure 2 Performance of kallisto and other methods. (a) Accuracy of kallisto, 
Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20 RSEM simulations 
of 30 million 75-bp paired-end reads based on the abundances and 
error profile of GEUVADIS sample NA12716_7 (selected for its depth of 
sequencing). For each simulation, we report the accuracy as the median 
relative difference in the estimated read count of each transcript. Estimated 
counts were used rather than transcripts per million (TPM) because the latter 
is based on both the assignment of ambiguous reads and the estimation of 
effective lengths of transcripts, so a program might be penalized for having  
a differing notion of effective length despite accurately assigning reads.  
The values reported are means across the 20 simulations (the variance 
was too small to be visible in this plot). Relative difference is defined as 
the absolute difference between the estimated abundance and the ground 
truth divided by the average of the two. (b) Total running time in minutes 
for processing the 20 simulated data sets of 30 million paired-end reads 
described in a. All processing was done using 20 cores, with programs being 
run with 20 threads when possible (Bowtie2, TopHat2, RSEM, Cufflinks) and  
20 parallel processes otherwise (eXpress, kallisto). Each box represents one 
dataset. Since eXpress and kallisto process all datasets in parallel, the only 
quantification time shown is the maximum of all the quantifications.
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To validate and benchmark kallisto, we tested it on a set of 20 
RNA-seq simulations generated with the program RSEM (RNA-Seq  
by Expectation Maximization)9, as well as on RNA-seq data from 
the Sequencing Quality Control Consortium (SEQC)10 for which 
quantitative PCR (qPCR) can be used as an independent validation  
of quantification. The transcript abundances and error profiles 
for the simulated data were based on the quantification of sample  
NA12716_7 from the Genetic European Variation in Health  
and Disease (GEUVADIS) data set11. To accord with GEUVADIS 
samples, the simulations consisted of 30 million reads. We examine 
the quality of the kallisto pseudoalignments as compared to pseu-
doalignments extracted from Bowtie2 alignments. The two methods  
agreed exactly on the set of reported transcripts for 70.7% of the 
reads, but when they differed on the (pseudo)alignment of a read, 
Bowtie2 reported 8.02 transcripts on average compared to 4.96 for 
kallisto. Despite being much more specific than Bowtie2, kallisto had  
almost 100% sensitivity. The transcript of origin was contained in 
the set of reported transcripts for 99.89% of the reads, only 0.1% 
less than with Bowtie2 (99.99%). On the real data used as the basis 
for the simulations (NA12716_7), the programs displayed similar 
characteristics. The two methods agreed exactly for 66.22% of reads 
where both (pseudo)aligned, and for differing reads Bowtie2 aligned 
to 8.94 transcripts on average, versus 4.86 for kallisto. As expected, 
the number of (pseudo)aligned reads was lower for the real data, with 
86.5% of the reads aligned by Bowtie2 versus 90.8% pseudoaligned 
by kallisto.

The accuracy of kallisto is similar to those of existing RNA-seq 
quantification tools (Fig. 2a and Supplementary Fig. 2) and enables 
a substantial improvement over Cufflinks2 and Sailfish5. The inferior 
performance of Cufflinks can be attributed to its limited application 
of the EM algorithm in cases where reads multi-map across genomic 
locations12. Unlike Sailfish5, which shreds reads into k-mers for fast 
hashing, resulting in a loss of information, kallisto’s pseudoalignments 
explicitly preserve the information provided by k-mers across reads 
(Supplementary Fig. 1).

All programs have reduced performance on paralogs owing to 
the similarity among genes within a family, but kallisto remains 
highly competitive, again almost matching RSEM’s performance 
(Supplementary Figs. 3 and 4). To test kallisto’s suitability for allele-
specific expression quantification, we simulate reads from a transcrip-
tome with two distinct haplotypes. The Spearman’s correlation for 
kallisto was 0.833 vs. 0.848 for RSEM, 0.830 for eXpress and 0.706 for 
Sailfish, showing that kallisto is suitable for allele-specific expression. 
Notably, the simulation was based on RSEM, for generating both the 
parameters and then the data using them.

We also tested kallisto on SEQC data that has independently been 
quantified with qPCR. Kallisto performed similarly to other programs 
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Figure 1 Overview of kallisto. The input consists of a reference transcriptome 
and reads from an RNA-seq experiment. (a) An example of a read (in black) 
and three overlapping transcripts with exonic regions as shown. (b) An index 
is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where 
nodes (v_1, v_2, v_3, ... ) are k-mers, each transcript corresponds to a 
colored path as shown and the path cover of the transcriptome induces a  
k-compatibility class for each k-mer. (c) Conceptually, the k-mers of a read are 
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping 
(black dashed lines) uses the information stored in the T-DBG to skip k-mers 
that are redundant because they have the same k-compatibility class. (e) The  
k-compatibility class of the read is determined by taking the intersection  
of the k-compatibility classes of its constituent k-mers.

1.00

0.75

M
ed

ia
n 

re
la

tiv
e 

di
ffe

re
nc

e

0.50

0.25

0

TopHat2
+

Cufflinks

HISAT
+

Cufflinks

Sailfish Bowtie2
+

eXpress
method

Kallisto EMSAR Bowtie2
+

RSEM

0.52 0.51

0.21

0.06 0.05 0.05 0.03

2,500

2,000

1,500

1,000

500

0

TopHat2
+

Cufflinks

Bowtie2
+

RSEM

Bowtie2
+

eXpress

Bowtie2
+

EMSAR
method

HISAT
+

Cufflinks

Sailfish Kallisto

Stage
Alignment
Quantification

T
im

e 
(m

in
)

a

b

Figure 2 Performance of kallisto and other methods. (a) Accuracy of kallisto, 
Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20 RSEM simulations 
of 30 million 75-bp paired-end reads based on the abundances and 
error profile of GEUVADIS sample NA12716_7 (selected for its depth of 
sequencing). For each simulation, we report the accuracy as the median 
relative difference in the estimated read count of each transcript. Estimated 
counts were used rather than transcripts per million (TPM) because the latter 
is based on both the assignment of ambiguous reads and the estimation of 
effective lengths of transcripts, so a program might be penalized for having  
a differing notion of effective length despite accurately assigning reads.  
The values reported are means across the 20 simulations (the variance 
was too small to be visible in this plot). Relative difference is defined as 
the absolute difference between the estimated abundance and the ground 
truth divided by the average of the two. (b) Total running time in minutes 
for processing the 20 simulated data sets of 30 million paired-end reads 
described in a. All processing was done using 20 cores, with programs being 
run with 20 threads when possible (Bowtie2, TopHat2, RSEM, Cufflinks) and  
20 parallel processes otherwise (eXpress, kallisto). Each box represents one 
dataset. Since eXpress and kallisto process all datasets in parallel, the only 
quantification time shown is the maximum of all the quantifications.
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To validate and benchmark kallisto, we tested it on a set of 20 
RNA-seq simulations generated with the program RSEM (RNA-Seq  
by Expectation Maximization)9, as well as on RNA-seq data from 
the Sequencing Quality Control Consortium (SEQC)10 for which 
quantitative PCR (qPCR) can be used as an independent validation  
of quantification. The transcript abundances and error profiles 
for the simulated data were based on the quantification of sample  
NA12716_7 from the Genetic European Variation in Health  
and Disease (GEUVADIS) data set11. To accord with GEUVADIS 
samples, the simulations consisted of 30 million reads. We examine 
the quality of the kallisto pseudoalignments as compared to pseu-
doalignments extracted from Bowtie2 alignments. The two methods  
agreed exactly on the set of reported transcripts for 70.7% of the 
reads, but when they differed on the (pseudo)alignment of a read, 
Bowtie2 reported 8.02 transcripts on average compared to 4.96 for 
kallisto. Despite being much more specific than Bowtie2, kallisto had  
almost 100% sensitivity. The transcript of origin was contained in 
the set of reported transcripts for 99.89% of the reads, only 0.1% 
less than with Bowtie2 (99.99%). On the real data used as the basis 
for the simulations (NA12716_7), the programs displayed similar 
characteristics. The two methods agreed exactly for 66.22% of reads 
where both (pseudo)aligned, and for differing reads Bowtie2 aligned 
to 8.94 transcripts on average, versus 4.86 for kallisto. As expected, 
the number of (pseudo)aligned reads was lower for the real data, with 
86.5% of the reads aligned by Bowtie2 versus 90.8% pseudoaligned 
by kallisto.

The accuracy of kallisto is similar to those of existing RNA-seq 
quantification tools (Fig. 2a and Supplementary Fig. 2) and enables 
a substantial improvement over Cufflinks2 and Sailfish5. The inferior 
performance of Cufflinks can be attributed to its limited application 
of the EM algorithm in cases where reads multi-map across genomic 
locations12. Unlike Sailfish5, which shreds reads into k-mers for fast 
hashing, resulting in a loss of information, kallisto’s pseudoalignments 
explicitly preserve the information provided by k-mers across reads 
(Supplementary Fig. 1).

All programs have reduced performance on paralogs owing to 
the similarity among genes within a family, but kallisto remains 
highly competitive, again almost matching RSEM’s performance 
(Supplementary Figs. 3 and 4). To test kallisto’s suitability for allele-
specific expression quantification, we simulate reads from a transcrip-
tome with two distinct haplotypes. The Spearman’s correlation for 
kallisto was 0.833 vs. 0.848 for RSEM, 0.830 for eXpress and 0.706 for 
Sailfish, showing that kallisto is suitable for allele-specific expression. 
Notably, the simulation was based on RSEM, for generating both the 
parameters and then the data using them.

We also tested kallisto on SEQC data that has independently been 
quantified with qPCR. Kallisto performed similarly to other programs 
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Figure 1 Overview of kallisto. The input consists of a reference transcriptome 
and reads from an RNA-seq experiment. (a) An example of a read (in black) 
and three overlapping transcripts with exonic regions as shown. (b) An index 
is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where 
nodes (v_1, v_2, v_3, ... ) are k-mers, each transcript corresponds to a 
colored path as shown and the path cover of the transcriptome induces a  
k-compatibility class for each k-mer. (c) Conceptually, the k-mers of a read are 
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping 
(black dashed lines) uses the information stored in the T-DBG to skip k-mers 
that are redundant because they have the same k-compatibility class. (e) The  
k-compatibility class of the read is determined by taking the intersection  
of the k-compatibility classes of its constituent k-mers.

1.00

0.75

M
ed

ia
n 

re
la

tiv
e 

di
ffe

re
nc

e

0.50

0.25

0

TopHat2
+

Cufflinks

HISAT
+

Cufflinks

Sailfish Bowtie2
+

eXpress
method

Kallisto EMSAR Bowtie2
+

RSEM

0.52 0.51

0.21

0.06 0.05 0.05 0.03

2,500

2,000

1,500

1,000

500

0

TopHat2
+

Cufflinks

Bowtie2
+

RSEM

Bowtie2
+

eXpress

Bowtie2
+

EMSAR
method

HISAT
+

Cufflinks

Sailfish Kallisto

Stage
Alignment
Quantification

T
im

e 
(m

in
)

a

b

Figure 2 Performance of kallisto and other methods. (a) Accuracy of kallisto, 
Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20 RSEM simulations 
of 30 million 75-bp paired-end reads based on the abundances and 
error profile of GEUVADIS sample NA12716_7 (selected for its depth of 
sequencing). For each simulation, we report the accuracy as the median 
relative difference in the estimated read count of each transcript. Estimated 
counts were used rather than transcripts per million (TPM) because the latter 
is based on both the assignment of ambiguous reads and the estimation of 
effective lengths of transcripts, so a program might be penalized for having  
a differing notion of effective length despite accurately assigning reads.  
The values reported are means across the 20 simulations (the variance 
was too small to be visible in this plot). Relative difference is defined as 
the absolute difference between the estimated abundance and the ground 
truth divided by the average of the two. (b) Total running time in minutes 
for processing the 20 simulated data sets of 30 million paired-end reads 
described in a. All processing was done using 20 cores, with programs being 
run with 20 threads when possible (Bowtie2, TopHat2, RSEM, Cufflinks) and  
20 parallel processes otherwise (eXpress, kallisto). Each box represents one 
dataset. Since eXpress and kallisto process all datasets in parallel, the only 
quantification time shown is the maximum of all the quantifications.
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To validate and benchmark kallisto, we tested it on a set of 20 
RNA-seq simulations generated with the program RSEM (RNA-Seq  
by Expectation Maximization)9, as well as on RNA-seq data from 
the Sequencing Quality Control Consortium (SEQC)10 for which 
quantitative PCR (qPCR) can be used as an independent validation  
of quantification. The transcript abundances and error profiles 
for the simulated data were based on the quantification of sample  
NA12716_7 from the Genetic European Variation in Health  
and Disease (GEUVADIS) data set11. To accord with GEUVADIS 
samples, the simulations consisted of 30 million reads. We examine 
the quality of the kallisto pseudoalignments as compared to pseu-
doalignments extracted from Bowtie2 alignments. The two methods  
agreed exactly on the set of reported transcripts for 70.7% of the 
reads, but when they differed on the (pseudo)alignment of a read, 
Bowtie2 reported 8.02 transcripts on average compared to 4.96 for 
kallisto. Despite being much more specific than Bowtie2, kallisto had  
almost 100% sensitivity. The transcript of origin was contained in 
the set of reported transcripts for 99.89% of the reads, only 0.1% 
less than with Bowtie2 (99.99%). On the real data used as the basis 
for the simulations (NA12716_7), the programs displayed similar 
characteristics. The two methods agreed exactly for 66.22% of reads 
where both (pseudo)aligned, and for differing reads Bowtie2 aligned 
to 8.94 transcripts on average, versus 4.86 for kallisto. As expected, 
the number of (pseudo)aligned reads was lower for the real data, with 
86.5% of the reads aligned by Bowtie2 versus 90.8% pseudoaligned 
by kallisto.

The accuracy of kallisto is similar to those of existing RNA-seq 
quantification tools (Fig. 2a and Supplementary Fig. 2) and enables 
a substantial improvement over Cufflinks2 and Sailfish5. The inferior 
performance of Cufflinks can be attributed to its limited application 
of the EM algorithm in cases where reads multi-map across genomic 
locations12. Unlike Sailfish5, which shreds reads into k-mers for fast 
hashing, resulting in a loss of information, kallisto’s pseudoalignments 
explicitly preserve the information provided by k-mers across reads 
(Supplementary Fig. 1).

All programs have reduced performance on paralogs owing to 
the similarity among genes within a family, but kallisto remains 
highly competitive, again almost matching RSEM’s performance 
(Supplementary Figs. 3 and 4). To test kallisto’s suitability for allele-
specific expression quantification, we simulate reads from a transcrip-
tome with two distinct haplotypes. The Spearman’s correlation for 
kallisto was 0.833 vs. 0.848 for RSEM, 0.830 for eXpress and 0.706 for 
Sailfish, showing that kallisto is suitable for allele-specific expression. 
Notably, the simulation was based on RSEM, for generating both the 
parameters and then the data using them.

We also tested kallisto on SEQC data that has independently been 
quantified with qPCR. Kallisto performed similarly to other programs 
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Figure 1 Overview of kallisto. The input consists of a reference transcriptome 
and reads from an RNA-seq experiment. (a) An example of a read (in black) 
and three overlapping transcripts with exonic regions as shown. (b) An index 
is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where 
nodes (v_1, v_2, v_3, ... ) are k-mers, each transcript corresponds to a 
colored path as shown and the path cover of the transcriptome induces a  
k-compatibility class for each k-mer. (c) Conceptually, the k-mers of a read are 
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping 
(black dashed lines) uses the information stored in the T-DBG to skip k-mers 
that are redundant because they have the same k-compatibility class. (e) The  
k-compatibility class of the read is determined by taking the intersection  
of the k-compatibility classes of its constituent k-mers.
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Figure 2 Performance of kallisto and other methods. (a) Accuracy of kallisto, 
Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20 RSEM simulations 
of 30 million 75-bp paired-end reads based on the abundances and 
error profile of GEUVADIS sample NA12716_7 (selected for its depth of 
sequencing). For each simulation, we report the accuracy as the median 
relative difference in the estimated read count of each transcript. Estimated 
counts were used rather than transcripts per million (TPM) because the latter 
is based on both the assignment of ambiguous reads and the estimation of 
effective lengths of transcripts, so a program might be penalized for having  
a differing notion of effective length despite accurately assigning reads.  
The values reported are means across the 20 simulations (the variance 
was too small to be visible in this plot). Relative difference is defined as 
the absolute difference between the estimated abundance and the ground 
truth divided by the average of the two. (b) Total running time in minutes 
for processing the 20 simulated data sets of 30 million paired-end reads 
described in a. All processing was done using 20 cores, with programs being 
run with 20 threads when possible (Bowtie2, TopHat2, RSEM, Cufflinks) and  
20 parallel processes otherwise (eXpress, kallisto). Each box represents one 
dataset. Since eXpress and kallisto process all datasets in parallel, the only 
quantification time shown is the maximum of all the quantifications.
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To validate and benchmark kallisto, we tested it on a set of 20 
RNA-seq simulations generated with the program RSEM (RNA-Seq  
by Expectation Maximization)9, as well as on RNA-seq data from 
the Sequencing Quality Control Consortium (SEQC)10 for which 
quantitative PCR (qPCR) can be used as an independent validation  
of quantification. The transcript abundances and error profiles 
for the simulated data were based on the quantification of sample  
NA12716_7 from the Genetic European Variation in Health  
and Disease (GEUVADIS) data set11. To accord with GEUVADIS 
samples, the simulations consisted of 30 million reads. We examine 
the quality of the kallisto pseudoalignments as compared to pseu-
doalignments extracted from Bowtie2 alignments. The two methods  
agreed exactly on the set of reported transcripts for 70.7% of the 
reads, but when they differed on the (pseudo)alignment of a read, 
Bowtie2 reported 8.02 transcripts on average compared to 4.96 for 
kallisto. Despite being much more specific than Bowtie2, kallisto had  
almost 100% sensitivity. The transcript of origin was contained in 
the set of reported transcripts for 99.89% of the reads, only 0.1% 
less than with Bowtie2 (99.99%). On the real data used as the basis 
for the simulations (NA12716_7), the programs displayed similar 
characteristics. The two methods agreed exactly for 66.22% of reads 
where both (pseudo)aligned, and for differing reads Bowtie2 aligned 
to 8.94 transcripts on average, versus 4.86 for kallisto. As expected, 
the number of (pseudo)aligned reads was lower for the real data, with 
86.5% of the reads aligned by Bowtie2 versus 90.8% pseudoaligned 
by kallisto.

The accuracy of kallisto is similar to those of existing RNA-seq 
quantification tools (Fig. 2a and Supplementary Fig. 2) and enables 
a substantial improvement over Cufflinks2 and Sailfish5. The inferior 
performance of Cufflinks can be attributed to its limited application 
of the EM algorithm in cases where reads multi-map across genomic 
locations12. Unlike Sailfish5, which shreds reads into k-mers for fast 
hashing, resulting in a loss of information, kallisto’s pseudoalignments 
explicitly preserve the information provided by k-mers across reads 
(Supplementary Fig. 1).

All programs have reduced performance on paralogs owing to 
the similarity among genes within a family, but kallisto remains 
highly competitive, again almost matching RSEM’s performance 
(Supplementary Figs. 3 and 4). To test kallisto’s suitability for allele-
specific expression quantification, we simulate reads from a transcrip-
tome with two distinct haplotypes. The Spearman’s correlation for 
kallisto was 0.833 vs. 0.848 for RSEM, 0.830 for eXpress and 0.706 for 
Sailfish, showing that kallisto is suitable for allele-specific expression. 
Notably, the simulation was based on RSEM, for generating both the 
parameters and then the data using them.

We also tested kallisto on SEQC data that has independently been 
quantified with qPCR. Kallisto performed similarly to other programs 
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Figure 1 Overview of kallisto. The input consists of a reference transcriptome 
and reads from an RNA-seq experiment. (a) An example of a read (in black) 
and three overlapping transcripts with exonic regions as shown. (b) An index 
is constructed by creating the transcriptome de Bruijn Graph (T-DBG) where 
nodes (v_1, v_2, v_3, ... ) are k-mers, each transcript corresponds to a 
colored path as shown and the path cover of the transcriptome induces a  
k-compatibility class for each k-mer. (c) Conceptually, the k-mers of a read are 
hashed (black nodes) to find the k-compatibility class of a read. (d) Skipping 
(black dashed lines) uses the information stored in the T-DBG to skip k-mers 
that are redundant because they have the same k-compatibility class. (e) The  
k-compatibility class of the read is determined by taking the intersection  
of the k-compatibility classes of its constituent k-mers.
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Figure 2 Performance of kallisto and other methods. (a) Accuracy of kallisto, 
Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20 RSEM simulations 
of 30 million 75-bp paired-end reads based on the abundances and 
error profile of GEUVADIS sample NA12716_7 (selected for its depth of 
sequencing). For each simulation, we report the accuracy as the median 
relative difference in the estimated read count of each transcript. Estimated 
counts were used rather than transcripts per million (TPM) because the latter 
is based on both the assignment of ambiguous reads and the estimation of 
effective lengths of transcripts, so a program might be penalized for having  
a differing notion of effective length despite accurately assigning reads.  
The values reported are means across the 20 simulations (the variance 
was too small to be visible in this plot). Relative difference is defined as 
the absolute difference between the estimated abundance and the ground 
truth divided by the average of the two. (b) Total running time in minutes 
for processing the 20 simulated data sets of 30 million paired-end reads 
described in a. All processing was done using 20 cores, with programs being 
run with 20 threads when possible (Bowtie2, TopHat2, RSEM, Cufflinks) and  
20 parallel processes otherwise (eXpress, kallisto). Each box represents one 
dataset. Since eXpress and kallisto process all datasets in parallel, the only 
quantification time shown is the maximum of all the quantifications.
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Bray,	N.L.	et	al.	(2016).	Near-optimal	probabilistic	RNA-
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