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. Accompanying Reading th.

* https://Igatto.github.io/
ntroMachineLearningWithR/unsupervised-
earning.html

- (in particular 4-4.5)




. Aim of Clustering th,

* Exploratory data analysis for large data

* Summarize major trends

* What is similar to what, what behaves like
what?




. Aim of Clustering th,

 High Throughput analysis
- 384 or 1536 well plates
* 'Omics
- Metabolomics
 100s-1000s of metabolites at once

Transcriptomics
 10,000s of transcripts at once

Single cell transcriptomics
 10,000s of transcripts x 1000s of cells at once

- Meta genomics
 100s-1000s of species at once

Box plot won't quite cut it for large data...



. Data preparation th,

e 2D - tabular format

- All samples x All measured units

* You also might consider...
- Filtering
* Very low values
* Values that don't change
« e.q. filter out vector like "c(0, 0, 0, 0, 0, 0)°
- Log transform (if your data are near log normal)
* e.qg. transcript expression data

- Scaling to Z-score
« Subtract mean
« Divide by standard deviation



. Distance Metrics th,

* Relative / pattern S (2 — ) (5 — §

- Pearsons's r Vi (e — 2250 (v — 9)?
* Pearson's distance: 1 -r

- Coefficient of determination (r2)
e coefficient of determination distance (1 - r?)

- Spearman's p (as above, but with ranks, not raw x)
« Spearman's distance: 1 -p

 Absolute

- Manhattan
- Euclidean



. Distance Metrics th,

+ Manhattan d(p.q) =) |pi —ail
i=1
» Euclidean d(p,q) = \ Z(pi — q;)2
1=1

Where where p and g are vectors.

E.g. of the abundance of a particular gene in
different samples



. Distance Metrics th,

* Manhattan distance is also
called "Taxi-cab" distance y
(red, blue, yellow).

 Euclidean distance is the /
diagnal (green) A




. Hierarchical Clustering th_

» Always combine the G G @ &

next two items (or

clusters) with the & (de)
smallest distance

between them (def

* Stop combing when (bcdef)
only one cluster

remains




Hierarchical Clustering th_

Gene expression in neurons

Clustergram of RNA-Seq
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. K-means clustering th,

e Choose k random "centers"

* Assign ever item to the cluster with the
closest center

 Change the center to be the average of the
new cluster

 Re-assign any genes that are now closer to a
different center

* Repeat until convergence



K-means clustering
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K-means clustering
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K-means clustering
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K-means clustering th,
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K-means clustering th,
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K-means clustering

Transcriptional response of yeast to oxidative stress
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. Principal Component Analysis th_

* Find low dimensional projection of data that
captures maximal amount of variance

g Maximize variance Minimize residuals
(squared distance) (squared distance)
of red dots in in this direction

this direction



. Principal Component Analysis th_

 |dentify largest PCA
signals in the data '
* Quality control 104
- Do replicates and
similar samples 5-

cluster together &




. Practical Considerations th.

* Hierarchical clustering
- One can "cut" the dendogram to define clusters
- One gets mix of large and small clusters and outlying items

e K-means
- It's necessary to choose k, the number of centers

- Biases towards evenly sized clusters
- Fast

« PCA

- Very helpful in visualization / understanding
- Doesn't directly define clusters



. Questions? hhu_

* Next Up —» We are done!




Key Points and Example Question th.

Aim of clustering (summarizing big-data, unsupervised learning)
Typical data prep with filtering, maybe transforming, and scaling
Distance metrics (1 - correlation metrics, absolute distance metrics)

- Basic idea of how, but more importantly how to interpret results.

» Types of clustering
- Hierarchical, K-means, PCA

Example Question

19. Take a look at the following result of a clustering analysis on the transcriptome (10,000

transcripts) of samples treated for 2 or 4 days with a mock (M) control or gibberellic

acid (GA) treatment.

4M.2
a1 4GA3
4GA2
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4GA 1
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(b) (2 points) Which of the following can you confidently conclude from the analysis?
0O Sample 2M.3 is definitely an outlier
O The most prominent pattern in the data is differences between treatments
(M & GA)
0 Gene expression is higher after 4 days than 2.

O The most prominent pattern in the data is differences between 2 and 4
days.
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