diff --git a/README.md b/README.md index 8dfb38d11a63588857835011e06d0690be6107e1..d2789bc0b73fa5e6bca815f19cd758e5b7d46cca 100644 --- a/README.md +++ b/README.md @@ -1,18 +1,18 @@ # Carbon Availability Transcriptomics -Chlamydomonas reinhardtii CC-1690 was grown in bioreactors. When the cells reached a non-stationary density, the acetate supply was stopped and the medium was kept at 25°C (control) or heated to 35 °C and 40 °C. Additionally to a preheat sample, four further samples were taken as triplicates after 2h, 4h, 8h, and 24h of heat treatment (nopump samples). The samples were analysed with NGS. In [Zhang et al 2022](https://doi.org/10.1038/s42003-022-03359-z) samples were taken at the same time points for 35°C and 40°C but with constant nutrient supply (TAP samples). +Chlamydomonas reinhardtii CC-1690 was grown in bioreactors. When the cells reached a non-stationary density, the acetate supply was stopped and the medium was kept at 25°C (control) or heated to 35 °C and 40 °C. Additionally to a preheat sample, four further samples were taken as triplicates after 2h, 4h, 8h, and 24h of heat treatment (nopump samples). The samples were analysed with NGS. In [Zhang et al 2022](https://doi.org/10.1038/s42003-022-03359-z ) samples were taken at the same time points for 35°C and 40°C but with constant nutrient supply (TAP samples). _Table 1: Sampling schema for Transcriptomics analysis. Three biological replicates were measured. An x indicates triplicates measured at the respective time points._ |condition|-18 h (preheat)|2 h|4 h|8 h|24 h|reference| |---|--|--|--|--|--|--| -|25°C TAP|x|x| | |x|[Zhang et al. 2023](https://doi.org/10.1101/2022.12.04.519034)| -|35°C TAP|x|x|x|x|x|[Zhang et al. 2022](https://doi.org/10.1038/s42003-022-03359-z)| -|40°C TAP|x|x|x|x|x|[Zhang et al. 2022](https://doi.org/10.1038/s42003-022-03359-z)| -|25°C nopump|x|x|x|x|x|[Zhang et al. 2023](https://doi.org/10.1101/2022.12.04.519034)| -|35°C nopump|x|x|x|x|x|[Zhang et al. 2023](https://doi.org/10.1101/2022.12.04.519034)| -|40°C nopump|x|x|x|x|x|[Zhang et al. 2023](https://doi.org/10.1101/2022.12.04.519034)| +|25°C TAP|x|x| | |x|[Zhang et al. 2023](https://doi.org/10.1101/2022.12.04.519034)| +|35°C TAP|x|x|x|x|x|[Zhang et al. 2022](https://doi.org/10.1038/s42003-022-03359-z)| +|40°C TAP|x|x|x|x|x|[Zhang et al. 2022](https://doi.org/10.1038/s42003-022-03359-z)| +|25°C nopump|x|x|x|x|x|[Zhang et al. 2023](https://doi.org/10.1101/2022.12.04.519034)| +|35°C nopump|x|x|x|x|x|[Zhang et al. 2023](https://doi.org/10.1101/2022.12.04.519034)| +|40°C nopump|x|x|x|x|x|[Zhang et al. 2023](https://doi.org/10.1101/2022.12.04.519034)| Comparative analysis of both experiments were performed within this ARC. These include @@ -33,22 +33,29 @@ References: - Analysis: - - Benedikt Venn, Lukas Weil, Kevin Schneider, David Zimmer & Timo Mühlhaus. (2022). fslaborg/FSharp.Stats. Zenodo. https://doi.org/10.5281/zenodo.6337056 + - Benedikt Venn, Lukas Weil, Kevin Schneider, David Zimmer & Timo Mühlhaus. (2022). fslaborg/FSharp.Stats. Zenodo. https://doi.org/10.5281/zenodo.6337056 - - Kevin Schneider, Lukas Weil, David Zimmer, Benedikt Venn & Timo Mühlhaus. (2022). CSBiology/BioFSharp. Zenodo. https://doi.org/10.5281/zenodo.6335372 + - Kevin Schneider, Lukas Weil, David Zimmer, Benedikt Venn & Timo Mühlhaus. (2022). CSBiology/BioFSharp. Zenodo. https://doi.org/10.5281/zenodo.6335372 - - Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014). https://doi.org/10.1186/s13059-014-0550-8 + - Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014). https://doi.org/10.1186/s13059-014-0550-8 - Andrews, S. (n.d.). FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ + + - BBDuk: https://sourceforge.net/projects/bbmap/ + + - Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 2015 Mar 9. doi: 10.1038/nmeth.3317. + + - Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014 Jul 1;42:W187-W191. + + - Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014 Apr 1;30(7):923-30. - Visualization: - - Schneider K, Venn B and Mühlhaus T. Plotly.NET: A fully featured charting library for .NET programming languages [version 1; peer review: awaiting peer review]. F1000Research 2022, 11:1094 (https://doi.org/10.12688/f1000research.123971.1 + - Schneider K, Venn B and Mühlhaus T. Plotly.NET: A fully featured charting library for .NET programming languages [version 1; peer review: awaiting peer review]. F1000Research 2022, 11:1094 (https://doi.org/10.12688/f1000research.123971.1 - Data and annotation: - - Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., … Grossman, A. R. (2007). The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 318(5848), 245–250. https://doi.org/10.1126/science.1143609 - - - Zhang, N., Mattoon, E.M., McHargue, W. et al. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun Biol 5, 460 (2022). https://doi.org/10.1038/s42003-022-03359-z + - Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., … Grossman, A. R. (2007). The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 318(5848), 245–250. https://doi.org/10.1126/science.1143609 + - Zhang, N., Mattoon, E.M., McHargue, W. et al. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun Biol 5, 460 (2022). https://doi.org/10.1038/s42003-022-03359-z