Introduction to
Plant Epigenetics

Franziska Turck,

Max Planck Institute for Plant Breeding
Reserch, Cologne

1y

’ Max Planck Institute
‘ for Plant Breeding Research

MAX-PLANCK-GESELLSCHAFT



What Do You Mean, “Epigenetic”?

Carrie Deans*' and Keith A. Maggert’
*Department of Entomology, and TDepartment of Biology, Texas A&M University, College Station, Texas 77843

Genetics (2015), Vol. 199, 887-896

,Epigenetics” is not a precisely defined term — it has evolved with time
and it has been used to describe very different concepts

Some researchers attribute ,epigenetics” to genetic observations, others more to mechanisms



Waddingtons definition of epigenetics
Canalization of developmental processes

Perturbation

Conrad Hal addington
(1905 -1975)

1.) Developmental
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2.) Developmental
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The term “epigenetic” was coined in 1940, when C. H. Waddington fused “Genetic” und“Epigenesis”.



Waddingtons Definition of Epigenetics

“...the branch of biology which
studies the causal interactions
between genes and their products

which bring the phenotype into
being.”

=> which is basically ,regulation of gene expression®

=> Note absence of terms “heritable”, “memory”,...
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Epigenetics and genetic assimilation

Perturbation
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F16. 2. The response to selection, from generation 5 onwards, for crossveinless
wings (“upward” selection) and normal wings (“downward” selection).

Waddington, C. H. (1956). The genetic assimilation of the
normal altered bithorax phenotype. Evolution 10, 1-13

. https://doi.org/10.2307/2406091
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Summary on genetic assimilation

—> Developmental processes are canalized through the
converging action of many gene networks

—> changes in the epigenetic landscape affect the frequency
of possible outcomes but not canalization

—> A population can respond rapidly to selection within the
possible fates determined by canalization

Further reading: Conrad Waddington and the origin of epigenetics
Denis Noble J Exp Biol (2015) 218 (6): 816—818.
https://doi.org/10.1242/jeb.120071



https://doi.org/10.1242/jeb.120071

Epigenetic trait regulation and ,bet hedging”

Core hypothesis: For a population it may be advantagous to keep
several trait ourcomes, in particular if the environment is unstable

(A)  Stable (B) Unstable

—&— Bet-hedging

—&— Specialist

Fithess

Gianella, M., er.al.Plant Reprod 34, 21-36 (2021).



Jean_Baptiste Lamarck
1744-1826

Lamarckism and Neo-Lamarckism

1809 Philosophie Zoologique.

According to his theory, two laws
govern the origin of species:

1. law: usage of traits results in
degeneration or formation

2. law: experiences are inherited
across generations

Neo-Lamarckism postulates that trait usage within ,canalized” options can contribute to

adaptation.
Further reading: Eva Jablonka, Marion J. Lamb. (2008). Soft Inheritance: Challenging the Modern Synthesis. Genetics

and Molecular Biology. 31: 393.


https://en.wikipedia.org/wiki/Philosophie_Zoologique

What are the mechansims behind epigenetic

landscapes?

inning“

Waddington‘s concept of ,,Underp






Epigenetic mechanisms are tightly connected
to chromatin packaging




Heterochromatin and Euchromatin

Nucleolus

Heterochromatin

Euchromatin
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Cell nucleus in transmission electroscopic image
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Current Opinion in Cell Biology

Volume 64, June 2020, Pages 77-89

Rhodes, 1997

=> Packaging of nuclear DNA in a
chromatin sturcture allowed evolution of
larger genomes

=> Chromatin and is a formidable barrier
to transcription and replication

With chromatin, eukaryotes have co-
evolved a zoo of chromatin-associated
protein complexes that regulated
packaging and gene expression


https://www.sciencedirect.com/science/journal/09550674/64/supp/C

Modifications of DNA- and histones extend
the genetic by an epigenetic code
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Concept of writers/readers/erasers
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Classification of chromatin in different

_colors”
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Some chromatin
colors contain
expressed
others
repressed genes

Sequeira-Mendes et al. TPC 2014



Chromatin states can antagonize or confirm
each other — generation of bistable states

Transcription cycle modifications
RNAPII S5, S2 phosphorylation
Histone acetylation

Gene expression

Polycomb Group modifications H2Aub1l
H3K27me3
H2AK121ubl
Trithorax Group modifications
H3K4me3/me?2
H3K36me2/me3
High H1 H3K27ac?

absence of Histone acetylation



Transcription of genes is linked to changes in
,epigenetic” modifications
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Steven Henikoff, Ali Shilatifard, 2011



Chromatin states can antagonize or confirm
each other — generation of bistable states

Transcription cycle modifications
RNAPII S5, S2 phosphorylation
Histone acetylation

Gene expression

Polycomb Group modifications H2Aub1l
H3K27me3
H2AK121ubl
Trithorax Group modifications
H3K4me3/me?2
H3K36me2/me3
High H1 H3K27ac?

absence of Histone acetylation



Introducing the Polycomb Group proteins in detail
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Bistable chromatin states explain gene
memories

Without bistability

With bistability
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Examples of developmental
processes under epigenetic
control in plants

1. Switching OFF the seed maturation programm during seedling establishment



Genes expressed during seed maturation must be
stably repressed during seedling establishment

Developing seed LATE EMBRYO ACTIVATED (LEA) expression
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Seed germination and seedling establishment



Regulation of seed maturation genes is dependent
on , AFL" and ,VAL" transcription factors
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AFL and VAL proteins bind RY-motifs which are necessary for
gene activation in maturing seed but also for stable repression
during seedling establishment
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Mutations in VAL1/2 and PRC1 components cause similar phenotypic changes in
seedlings; furthermore, VAL proteins interact with PRC1 components, Histone de-

acetylases and PRC2 associated proteins

A
Identified Accession Mol. Mass No. of Protein Sequence
Wild type Protein no. (kDa) Matched Peptides Coverage (%)
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Graphic summary
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Examples of developmental
processes under epigenetic
control in plants

1. Switching OFF the seed maturation programm during seedling establishment

2. The memory of winter in Brassicaceae
3. Switching ON floral organ identitiy genes after the floral transition



What is the memory of winter in the
Brassicaceae




FLC repression is unstable in PRC2 mutants
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VERNALIZATION 1
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LIKE HETEROCHROMTIN PROTEIN 1
(also called TERMINAL FLOWER 2)
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PcG-mediated memory is cell autonomous
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Downregulation of FLC in

the cold is dependent on

RY motifs and VALL. FLC activation during seed

development requires AF
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A. thaliana ATTCTGCATGGATTTCATTA-TTTCCTTGGAAAAAA-ATTGCATGTCATTC

A. lyrata GTTCTGCATGGATTTTATTATTTTCTTTGGAAATAA-TTTGCATGTCCTTC

A. halleri TTTCTGCATGGATTTTATTATTTTCTTTGGAAATAA-TTTGCATGTCCTTC
B. rapa TTTCTGCATGGATTT—TTTTTTTTTTTGTAAAAAAGATTGCATGTTATTC
B.oleracea TTTCTGCATGGATTTT-TTTTTATCTGTAAAAAAAA-ATTGCATGTTATTC
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Questa et al. Science 2016
Yuan et al. Nature Genetics 2016
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Presence of FRI prevents FLC downregulation
during seedling establishement — but how?
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Presence of FRI prevents FLC downregulation
during seedling establishement — but how?




Examples of developmental
processes under epigenetic
control in plants

1. Switching off the seed maturation programm during seedling establishment

2. The memory of winter in Brassicaceae
3. Switching ON floral organ identitiy genes after the floral transition



PRC2 holds back the reproductive transition

Early flowering mostly in SD Early flowering in SD and LD Embryonic flower



Flower organ formation requires expression
of ABC(DE) genes

Overexpression of a single ABCDE
gene can kick-start expression of the
others

Thomson, B., & Wellmer, F. (2019). Current topics in
developmental biology, 131, 185-210 .



PRCs repress florigen and genes regulated by florigen
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Expression occurs only in LD photoperiod



Triple mutants in TELOMERE REPEAT BINDING FACTORS show
severe developmental defects and misexpression of ABCDE genes
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trb 123

Col-0 = trb13
th0/ trb123 trb2+/-

Zhou et al., Nature Genetics 2018



TELOMERE REPEAT BINDING FACTORS bind

telomeres and motifs related to telomere repeats
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A telobox at SEP3 participates in repression and H3K27me3 recruitment
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PcG targeting is dependent on a ,,barcode”
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Graphic summary
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...it was me, right?
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