From 61cb543d293d9ed696c730dc3ee5b73546427201 Mon Sep 17 00:00:00 2001 From: Tom Winkler <t.winkler@uni-koeln.de> Date: Wed, 25 Sep 2024 09:39:18 +0000 Subject: [PATCH] Add README.md --- README.md | 4 ++++ 1 file changed, 4 insertions(+) create mode 100644 README.md diff --git a/README.md b/README.md new file mode 100644 index 0000000..f609e51 --- /dev/null +++ b/README.md @@ -0,0 +1,4 @@ +- Betalains are coloring pigments produced in some families of the order Caryophyllales, where they replace anthocyanins as coloring pigments. While the betalain pathway itself is well studied, the tissue-specific regulation of the pathway remains mostly unknown. +- We enhance the high-quality Amaranthus hypochondriacus reference genome and produce a substantially more complete genome annotation, incorporating isoform details. We annotate betalain and anthocyanin pathway genes along with their regulators in amaranth and map the genetic control and tissue-specific regulation of the betalain pathway. +- Our improved genome annotation allowed us to identify causal mutations that lead to a knock-out of red betacyanins in natural accessions of amaranth. We reveal the tissue-specific regulation of flower color via a previously uncharacterized MYB transcription factor, AhMYB2. Downregulation of AhMYB2 in the flower leads to reduced expression of key betalain enzyme genes and loss of red flower color. +- Our improved amaranth reference genome represents the most complete genome of amaranth to date and is a valuable resource for betalain and amaranth research. High similarity of the flower betalain regulator AhMYB2 to anthocyanin regulators and a partially conserved interaction motif support the co-option of anthocyanin regulators for the betalain pathway as a possible reason for the mutual exclusiveness of the two pigments. -- GitLab