diff --git a/README.md b/README.md
index bb9dea14f93beeba34d5d26bf85dc7df54db4523..50c2e6cc7bd6ac76bd5601a1dee7e8ff5c557999 100644
--- a/README.md
+++ b/README.md
@@ -2,4 +2,6 @@
 
 
 
-The blackcurrant (Ribes nigrum L., family Grossulariaceae) is a perennial shrub valued for its antioxidant-rich berries, widely used in the food and beverage industry. However, prolonged drought during the fruiting season leads to drought stress, inhibiting growth and reducing yields. To explore the underlying molecular mechanisms, we present the first high-quality chromosome-scale genome assembly for blackcurrant (cv. Rosenthals Langtraubige), the first in the Grossulariaceae family. Using this genomic reference, we analyzed the transcriptomic response of blackcurrant leaves and roots to drought stress, identifying key differentially expressed genes and significant changes in primary metabolites, such as increased proline and depleted organic acids under stress. This data can aid in developing drought-resistant blackcurrant cultivars.
\ No newline at end of file
+The blackcurrant (Ribes nigrum L., family Grossulariaceae) is a perennial shrub valued for its antioxidant-rich berries, widely used in the food and beverage industry. However, prolonged drought during the fruiting season leads to drought stress, inhibiting growth and reducing yields. To explore the underlying molecular mechanisms, we present the first high-quality chromosome-scale genome assembly for blackcurrant (cv. Rosenthals Langtraubige), the first in the Grossulariaceae family. Using this genomic reference, we analyzed the transcriptomic response of blackcurrant leaves and roots to drought stress, identifying key differentially expressed genes and significant changes in primary metabolites, such as increased proline and depleted organic acids under stress. This data can aid in developing drought-resistant blackcurrant cultivars.
+
+torronto
\ No newline at end of file