Explore ARCs
-
MAdLand Project - Schippers Lab
Evolutionary conserved and divergent responses to copper zinc superoxide dismutase inhibition in plants
After initial evolution in a reducing environment, life got successively challenged by reactive oxygen species (ROS), especially during the great oxidation event (GOE) that followed the development of photosynthesis. Therefore, ROS are deeply intertwined into the physiological, morphological and transcriptional responses of most present-day organisms. Copper-zinc superoxide dismutase (CuZnSOD) evolved during the GOE and are present in charophytes and extant land plants, but nearly absent from chlorophytes. The chemical inhibitor of CuZnSOD, lung cancer screen 1 (LCS-1), could greatly facilitate the study of SODs in diverse plants. Here, we determined the impact of chemical inhibition of plant CuZnSOD activity, on plant growth, transcription and metabolism. We followed a comparative approach by using different plant species, including Marchantia polymorpha and Physcomitrium patens, representing bryophytes, the sister lineage to vascular plants, and Arabidopsis thaliana. We show that LCS-1 causes oxidative stress in plants and that the inhibition of CuZnSODs provoked a similar core response that mainly impacted glutathione homeostasis in all plant species analyzed. That said, Physcomitrium and Arabidopsis, which contain multiple CuZnSOD isoforms showed a more complex and exacerbated response. In addition, an untargeted metabolomics approach revealed a specific metabolic signature for each plant species. Our comparative analysis exposes a conserved core response at the physiological and transcriptional level towards LCS-1, while the metabolic response largely varies. These differences correlate with the number and localization of the CuZnSOD isoforms present in each species.
Plant, Cell & Environment (in submission)
Updated -
Differential analysis of lpa2 mutant Chlamy complexome
Updated -
Algae cultures were grown under mixotrophic (TAP) and phototrophic (HMP) conditions. During 24h of 35°C/40°C heat treatment 'omics samples were taken.
Updated -
Algae cultures were grown mixotrophically (TAP). After 24h of 35°C/40°C the cells were shifted back to room temperature for 48h. 'omics samples were taken.
Updated -
MAdLand Project - Wolfgang Hess Lab
Charophyceae are the most complex streptophyte algae, possessing tissue-like structures, rhizoids and a cellulose-pectin-based cell wall akin to embryophytes. Together with the Zygnematophyceae and the Coleochaetophycae, the Charophyceae form a grade in which the Zygnematophyceae share a last common ancestor with land plants. The availability of genomic data, its short life cycle, and the ease of non-sterile cultivation in the laboratory have made the species Chara braunii an emerging model system for streptophyte terrestrialization and early land plant evolution. In this study, tissue containing nodal cells was prepared under the stereomicroscope, and an RNA-seq dataset was generated and compared to transcriptome data from whole plantlets. In both samples, transcript coverage was high for genes encoding ribosomal proteins and a homolog of the putative PAX3- and PAX7-binding protein 1. Gene ontology was used to classify the putative functions of the differently expressed genes. In the nodal cell sample, main upregulated molecular functions were related to protein, nucleic acid, ATP- and DNA binding. Looking at specific genes, several signaling-related genes and genes encoding sugar-metabolizing enzymes were found to be expressed at a higher level in the nodal cell sample, while photosynthesis-and chloroplast-related genes were expressed at a comparatively lower level. We detected the transcription of 21 different genes encoding DUF4360-containing cysteine-rich proteins. The data contribute to the growing understanding of Charophyceae developmental biology by providing a first insight into the transcriptome composition of Chara nodal cells.
Physiologia Plantarum / Volume 175, Issue 5 / e14025, https://doi.org/10.1111/ppl.14025
Updated -
Updated
-
HHU Plant Biochemistry / Wrobel-2023-CastorBeanEndospermProteome
Creative Commons Attribution 4.0 InternationalMapping the castor bean endosperm proteome revealed a metabolic interaction between plastid, mitochondria, and peroxisomes to optimize seedling growth
Updated -
Andrea Schrader / Grow An ARC
Creative Commons Attribution 4.0 InternationalUpdated -
Natural-Variation-and-Evolution / Microscopy_Collection / map-by-seq_CLSM-stacks
Creative Commons Attribution 4.0 InternationalUpdated -
A prototypic ARC that implements all specification standards accordingly
Updated -
Usman Anwer / Zhu2022JXB
Creative Commons Attribution 4.0 InternationalUpdated -
HHU Plant Biochemistry / Talinum fruticosum genome
Creative Commons Attribution 4.0 InternationalUpdated