Skip to content
Snippets Groups Projects

Explore ARCs

Recent searches
You don't have any recent searches
  • Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare.

    Updated
    Updated
  • Updated
  • Cofunctioning of bacterial exometabolites drives root microbiota establishment

    Updated
    Updated
  • Updated
  • Updated
  • The iron-containing porphyrin heme is of high interest for the food industry for the production of artificial meat as well as for medical applications, e.g. for anemia treatment. Recently, the biotechnological platform strain Corynebacterium glutamicum has emerged as a promising host for animal-free heme production. Beyond engineering of complex heme biosynthetic pathways, improving heme export offers significant yet untapped potential for enhancing production strains. In this study, a growth-coupled biosensor was designed to impose a selection pressure on the increased expression of the hrtBA operon encoding an ABC-type heme exporter in C. glutamicum. For this purpose, the promoter region PhrtB was replaced with that of the growth-regulating genes pfkA (phosphofructokinase) and aceE (pyruvate dehydrogenase), creating biosensor strains with a selection pressure for hrtBA activation. Resulting sensor strains were used for plate-based selections and for a repetitive batch f(luorescent)ALE using a robotics platform. Genome sequencing of isolated clones featuring increased hrtBA expression revealed three distinct mutational hotspots: (i) chrS, (ii) chrA, and (iii) cydD. Mutations in the genes of the ChrSA two-component system, which regulates hrtBA in response to heme levels, were identified as a promising target to enhance export activity. Furthermore, causal mutations within cydD, encoding an ABC-transporter essential for cytochrome bd oxidase assembly, were confirmed by the construction of a deletion mutant, which showed strongly increased hrtBA expression as well as increased cellular heme levels. These results further support the proposed role of CydDC as a heme transporter. Mutations identified in this study therefore underline the potential of biosensor-based growth coupling and provide promising engineering targets to improve microbial heme production.

    Updated
    Updated
  • PPD-H1 Improves Stress Resistance and Energy Metabolism to Boost Spike Fertility under High Ambient Temperatures

    Updated
    Updated
  • Updated
  • Microtubule-dependent endosomal transport is crucial for polar growth, ensuring the precise distribution of cellular cargos such as proteins and mRNAs. However, the molecular mechanism linking mRNAs to the endosomal surface remains poorly understood. Here, we present a structural analysis of the key RNA-binding protein Rrm4 from Ustilago maydis. Our findings reveal a different type of MademoiseLLE domain (MLLE) featuring a seven-helical bundle that provides a distinct binding interface. A comparative analysis with the canonical MademoiseLLE domain of the poly(A)-binding protein Pab1 disclosed unique characteristics of both domains. Deciphering the MLLE binding code enabled prediction and verification of previously unknown Rrm4 interactors containing short linear motifs. Importantly, we demonstrated that the human MLLE domains, such as those of PABPC1 and UBR5, employed a similar principle to distinguish among interaction partners. Thus, our study provides detailed mechanistic insights into how structural variations in the widely distributed MLLE domain facilitate mRNA attachment during endosomal transport.

    Updated
    Updated
  • Fungal pathogens depend on sophisticated gene expression programs for successful infection. A crucial component is RNA regulation mediated by RNA-binding proteins (RBPs). However, little is known about the spatiotemporal RNA control mechanisms during fungal pathogenicity. Here, we discover that the RBP Khd4 defines a distinct mRNA regulon to orchestrate membrane trafficking during pathogenic development of Ustilago maydis. By establishing hyperTRIBE for fungal RBPs, we generated a comprehensive transcriptome-wide map of Khd4 interactions in vivo. We identify a defined set of target mRNAs enriched for regulatory proteins involved, e.g., in GTPase signaling. Khd4 controls the stability of target mRNAs via its cognate regulatory element AUACCC present in their 3′ untranslated regions. Studying individual examples reveals a unique link between Khd4 and vacuole maturation. Thus, we uncover a distinct role for an RNA stability factor defining a specific mRNA regulon for membrane trafficking during pathogenicity.

    Updated
    Updated
  • Genome sequencing of blackcurrant (Ribes nigrum)

    Updated
    Updated
  • MAdLand Project - Erika Csicsely, Oguz Top, Wolfgang Frank et al.

    This ARC accompanies the publication in Plant Journal: https://doi.org/10.1111/tpj.17236

    DICER-LIKE (DCL) proteins play a central role in plant small RNA (sRNA) biogenesis. The genome of the early land plant Marchantia polymorpha encodes four DCL proteins: MpDCL1a, MpDCL1b, MpDCL3, and MpDCL4. While MpDCL1a, MpDCL3 and MpDCL4 show high similarities to their orthologs in Physcomitrium patens and Arabidopsis thaliana, MpDCL1b shares only a limited homology with PpDCL1b, but it is very similar, in terms of functional domains, to orthologs in other moss and fern species. We generated Mpdclge mutant lines for all MpDCL genes with the CRISPR/Cas9 system and conducted phenotypic analyses under control, salt stress, and phytohormone treatments to uncover specific MpDCL functions. The mutants displayed severe developmental aberrations, altered responses to salt and phytohormones, and disturbed sexual organ development. By combining mRNA and sRNA analyses, we demonstrate that MpDCLs and their associated sRNAs play pivotal roles in regulating development, abiotic stress tolerance and phytohormone response in M. polymorpha. We identified MpDCL1a in microRNA biogenesis, MpDCL4 in trans-acting small interfering RNA generation, and MpDCL3 in the regulation of pathogen-related genes. Notably, salt sensitivity in M. polymorpha is dependent on MpDCL1b and Mpdcl1bge mutants display enhanced tolerance and reduced miRNA expression in response to salt stress. We propose that M. polymorpha employs specific mechanisms for regulating MpDCL1b associated miRNAs under high salinity conditions, potentially shared with other species harboring MpDCL1b homologs.

    Updated
    Updated
  • Updated
  • Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota

    Updated
    Updated
  • ARC repo for MARS testing

    Updated
    Updated
  • Global expression patterns of R-genes in tomato and potato

    Updated
    Updated
  • Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare

    Updated
    Updated
  • Traits linked to natural variation of sulfur content in Arabidopsis thaliana

    Updated
    Updated
  • Predmoter — cross-species prediction of plant promoter and enhancer regions

    Updated
    Updated
  • Exploring natural genetic variation in photosynthesis-related traits of barley in the field

    Updated
    Updated